
www.manaraa.com

Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2011 

WETTING TRANSITIONS AT NANOSTRUCTURED SURFACES WETTING TRANSITIONS AT NANOSTRUCTURED SURFACES 

Yazdi Jamileh Seyed 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Chemistry Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/298 

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has 
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. 
For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=scholarscompass.vcu.edu%2Fetd%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/298?utm_source=scholarscompass.vcu.edu%2Fetd%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


www.manaraa.com

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
© Jamileh Seyed Yazdi, 2011 

 
All Rights Reserved 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 
 

WETTING TRANSITIONS AT 
NANOSTRUCTURED SURFACES 

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

in Chemistry at Virginia Commonwealth University 

 
by 
 
 
 

Jamileh Seyed Yazdi 
 
 
 

Master of Science in Chemistry 

Virginia Commonwealth University 

College of Humanities and Sciences 

Department of Chemistry 

Richmond, Virginia 

2011 

 
 
 

Director: Dr. Alenka Luzar, Professor of Chemistry 

Department of Chemistry 

 



www.manaraa.com

 
 
 
 
 

Acknowledgment 
 
I would like to dedicate this work to my advisor, Professor Alenka Luzar, for all her support and 

mentorship. Also I would like to give my special thanks to Professor Dusan Bratko, for his help 

and support during my study at VCU. I would like to thank Dr. Chris Daub for his help and  

Dr. Davide Vanzo and Mr. John Ritchie for their contributions. In addition, I appreciate financial 

support from Chemistry Department at Virginia Commonwealth University (Lidia M. Vallarino 

Scholarship) and National Science Foundation and Altria Group and Office of Global Education. 

I would like to thank my committee members for their help and their support. I would also like to 

thank Professor Jose Teixeira from LLB Saclay, France, for his valuable discussion. All supports 

from my family and my friends is highly appreciate.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



www.manaraa.com

 
 
 

To  
 

my husband Mohammad Reza 
 

and 
 

my son Daniel 



www.manaraa.com

ii 
 

Table of Contents 

Acknowledgment................................................................................................................................... i 

Table of Contents.................................................................................................................................. ii 

List of Figures...................................................................................................................................... iv 

List of Tables..................................................................................................................................... viii 

Abstract................................................................................................................................................ ix 

 

Chapter 1: Introduction....................................................................................................................... 1 

 

Chapter 2: Methods and models ....................................................................................................... 7 

 Water model ............................................................................................................................. 7 

 Surface model............................................................................................................................ 8 

 Water-surface interaction (mixing rules).................................................................................. 8 

 Simulation method, MD.............................................................................................................8 

 Verlet algorithm....................................................................................................................... 9 

 Long range electrostatic interactions........................................................................................10 

 Structural and thermodynamics properties.............................................................................. 11 

  Contact angle calculation............................................................................................ 11 

  Hydrogen bond calculation......................................................................................... 11 

 Dynamics properties................................................................................................................ 12 

  Time correlation functions.......................................................................................... 12 

  Diffusion coefficient................................................................................................... 13 

  Rotational dynamics................................................................................................... 13 

 

Chapter 3: Shape of a droplet atop a surface heterogeneity at a nanoscale.................................. 15 

 Simulation methodology ........................................................................................................ 16 

 Topological heterogeneity....................................................................................................... 17 

 Analysis................................................................................................................................... 20 

 Results and discussion............................................................................................................. 23 

 Conclusion............................................................................................................................... 24 

 

Chapter 4: Switchable nanowetting dynamics................................................................................ 26 



www.manaraa.com

iii 
 

 Simulation methodology..........................................................................................................26 

Smooth surfaces...................................................................................................................... 28 

 Corrugated surfaces................................................................................................................. 28 

 Analysis and results………………......................................................................................... 30 

 Scaling with the system size.................................................................................................... 32 

 Interfacial hydrogen bonds.......................................................................................................36 

 Contact angle calculation.........................................................................................................37 

 Influence of nanoroughness on contact line motion............................................................ 39 

 Macroscopic properties............................................................................................................39 

 Nanoscale dynamics.................................................................................................................42 

 Discussion............................................................................................................................... 46 

 Conclusion............................................................................................................................... 48 

 Future task that need to be completed..................................................................................... 49 

 

Chapter 5: Water dynamics inside nano-spheres............................................................................ 50 

 Simulation systems. In silico samples .................................................................................... 50 

 Confined water........................................................................................................................ 50 

 Simulation details.................................................................................................................... 52  

 Correlation functions............................................................................................................... 53 

 Results and discussion............................................................................................................. 67 

 Conclusion............................................................................................................................... 78 

 Future tasks that need to be completed................................................................................... 79 

 

Appendix I (full set of topological heterogeneity snapshots).......................................................... 80 

Appendix II (table)............................................................................................................................. 83 

Appendix III (FORTRAN code)....................................................................................................... 84 

Appendix IV (experimental data)..................................................................................................... 85 

Appendix V(developed FORTRAN codes)...................................................................................... 87 

References......................................................................................................................................... 101 

Vita.....................................................................................................................................................107 

 
 



www.manaraa.com

iv 
 

 
 
 

List of Figures 
 

 
Figure 1.1: Young’s contact angle.......................................................................................................... 1 
  
Figure 2.1: SPC/E water model.............................................................................................................. 7 
 
Figure 2.2: Lennard-Jones potential....................................................................................................... 8 
 
Figure 3.1: Schematic description of the surface covered with pillars for the case of topological 
heterogeneity......................................................................................................................................... 18 
 
Figure 3.2: (a) Three surfaces with rp (patch radius) rp=0 Å, rp=30Å and rp=∞ from left to right. (b) 
Snapshots of 2000 molecule water droplet on corresponding surfaces.................................................... 18 
 
Figure 3.3: Drop profiles for three different surfaces, the most hydrophilic (homogeneous surface,  
rp → ∞ Å), the most hydrophobic (rp=0 Å) and an intermediate patch size rp=30 Å. Black solid lines are 
fitted to the simulated data. Dashed line represents the surface, where the contact angles were measured. 
R is the distance from the main axis of the drop and height is the height of the drop on top of the 
surface.................................................................................................................................................. 19 
 
Figure 3.4: Simulated contact angle for topological (blue circles) and chemical (red diamonds) 
heterogeneity vs. the radius of the patch. Error bars are within the symbol sizes. Data points for chemical 
heterogeneity (red diamonds) are taken from ref. 26 for comparison to our simulation results (blue 
circles).................................................................................................................................................. 19 
 
Figure 3.5: Parameters used to calculate local form of the Cassie-Baxter equation. Figures are taken from 
John Ritchie’s Master Thesis................................................................................................................. 21 
 
Figure 3.6: Comparison of radius of the perimeter obtained from molecular simulation (Solid circles) and 
predicted values (solid squares) from equations (4) and (5) for (a) chemical and (b) topological 
heterogeneity. Lines are guides to the eye. Error bars are within the symbol sizes. (a) is based on the 
results of John Ritchie for chemical heterogeneity for comparison......................................................... 22 
 
Figure 3.7: Comparison of contact angles based on simulation and local Cassie-Baxter predictions for 
topological (maroon circles: simulation results, purple squares: predicted Cassie-Baxter values) and 
chemical heterogeneity (blue diamonds: simulation results, green downward triangles: predicted Cassie-
Baxter values). Error bars are within the symbol sizes. Solid lines are guide to the eye. Data points for 
chemical heterogeneity are taken from john Ritchie’s results for comparison......................................... 24 
 
Figure 4.1: Snapshots of 2000 water droplet’s relaxation on a smooth surface...................................... 28 
 
Figure 4.2: Left: snapshot of corrugated surface. Right: schematic description of the surface covered 
with pillars for the case of corrugated surface with Cassie and Wenzel features..................................... 29 



www.manaraa.com

v 
 

 
Figure 4.3: Snapshots of water droplet on corrugated surfaces. Left: droplet in Wenzel state; Right: 
droplet in Cassie state............................................................................................................................ 29 
 
Figure 4.4: Variation of the height of center of mass for smooth (left) and corrugated surface (right)….31 
 
Figure 4.5: Time correlation functions, R(t), of height of center of mass for smooth (left) and corrugated 
(right) surfaces. Insets are time correlation functions in logarithmic scale.............................................. 32 
 
Figure 4.6: Scaling with the system size for smooth surfaces. Y-axis is relaxation time and  
X-axis is number of water molecules in the droplet both in logarithmic scale......................................... 34 
 
Figure 4.7: Scaling with the system size for corrugated surfaces. Y-axis is relaxation time and X-axis is 
number of water molecules in the droplet both in logarithmic scale....................................................... 36 
 
 
Figure 4.8: Typical drop profiles for 2000 water molecule on a corrugated surface, for hydrophilic case. 
Black solid line is fitted to the simulated data. Dashed line represents the surface, where the contact 
angles were measured. R (x-axis) is the distance from the main axis of the drop and height (y-axis) is the 
height of the droplet.............................................................................................................................. 38 
 
Figure 4.9: Schematic of force balance for equilibrium contact angle on smooth, chemically 
homogeneous surface.............................................................................................................................40 
 
Figure 4.10: Dynamic contact angle (θ) versus velocity of the drop perimeter that has been calculated 
from the height of the center of mass (Appendix III)............................................................................. 44 
 
Figure 4.11: Cosine of dynamic contact angle, cos(θ), versus velocity of the drop perimeter. Inset is 
cos(θ), versus velocity of the drop perimeter in logarithmic scale. Inset shows cos(θ) versus velocity in a 
logarithmic scale................................................................................................................................... 45 
 
Figure 4.12: Dynamic contact angle cubed, θ3, versus velocity of the drop perimeter............................45 
 
Figure 4.13: Nanodroplet friction coefficient µ (Eq. 4.6) on corrugated substrate, shown as a function of 
perimeter velocity V at early stages of droplet relaxation following a change from hydrophobic to 
hydrophilic character of the surface........................................................................................................46 
 
Figure 4.14: Top view of water droplet after 500 ps equilibration time on a corrugated surface. Because 
of pinning perimeter is squarer than a circle.......................................................................................... 48 
 
Figure 5.1: a) Snapshot of hydrophilic C320 sample. b) Snapshot of hydrophobic C320............ 51 
 
Figure 5.2: a) Snapshot of hydrophilic C500 sample. b) Snapshot of hydrophobic C500............ 51 
 
Figure 5.3: a) Snapshot of hydrophilic C720 sample. b) Snapshot of hydrophobic C720............ 52 
 
Figure 5.4: a) Snapshot of hydrophilic C1500 sample. b) Snapshot of hydrophobic C1500........ 52 



www.manaraa.com

vi 
 

 
Figure 5.5: C320 samples, hydrophilic (blue) and hydrophobic (red), with 20 water molecules inside. a) 
Hydrogen bond correlation function, C(t). b) reactive flux hydrogen bond correlation function, k(t) in 
logarithmic scale. c) k(t) up to 50 ps. d) k(t) up to 0.2 ps, transient time is ~ 0.2 ps ............................... 54 
    
Figure 5.6: C500 samples, hydrophilic (blue) and hydrophobic (red), with 57 water molecules inside. a) 
Hydrogen bond correlation function, C(t). b) reactive flux hydrogen bond correlation function, k(t) in 
logarithmic scale. c) k(t) up to 50 ps. d) k(t) up to 0.2 ps, transient time is ~ 0.2 ps................................ 55 
 
Figure 5.7: C720 samples, hydrophilic (blue) and hydrophobic (red), with 100 water molecules inside. a) 
Hydrogen bond correlation function, C(t). b) reactive flux hydrogen bond correlation function, k(t) in 
logarithmic scale. c) k(t) up to 50 ps. d) k(t) up to 0.2 ps, transient time is ~ 0.2 ps ................................ 56 
 
Figure 5.8: C1500 samples, hydrophilic (blue) and hydrophobic (red), and charged sample (green), with 
500 water molecules inside. a) hydrogen bond correlation function, C(t). b) reactive flux hydrogen bond 
correlation function, k(t) in logarithmic scale. c) k(t) up to 50 ps. d) k(t) up to 0.2 ps, transient time is  
~ 0.2 ps.........................................................................................................................................................57 
 
Figure 5.9: C320 sample, hydrophilic (blue) and hydrophobic (red), with 20 water molecules inside. a) 
function representing local strain in the hydrogen bond network, n(t), b) restrictive reactive flux function, 
kin(t) ......................................................................................................................................................59 
 
Figure 5.10: C500 sample, hydrophilic (blue) and hydrophobic (red),  with 57 water molecules inside. a) 
function representing local strain in the hydrogen bond network, n(t), b) restrictive reactive flux function, 
kin(t) ......................................................................................................................................................60 
 
Figure 5.11: C720 sample, hydrophilic (blue) and hydrophobic (red), with 100 water molecules inside. a) 
function representing local strain in the hydrogen bond network, n(t), b) restrictive reactive flux function, 
kin(t) ......................................................................................................................................................61 
 
Figure 5.12: C1500 sample, hydrophilic (blue) and hydrophobic (red), and charged sample (green),   
with 500 water molecules inside. a) function representing local strain in the hydrogen bond network, n(t), 
b) restrictive reactive flux function, kin(t) ...............................................................................................62 
 
Figure 5.13: Correlation plot for C320 sample, with 20 water molecules inside. a) Hydrophilic, deviation 
is starting at 6.4 ps. b) Hydrophobic deviation is starting at 5.8 ps......................................................... 64 
                  
Figure 5.14: Correlation plot for C500 sample, with 57 water molecules inside. a) Hydrophilic, deviation 
is starting at 2.45 ps. b) Hydrophobic deviation is starting at 3.0 ps....................................................... 65 
 
Figure 5.15: Correlation plot for C720 sample, with 100 water molecules inside. a) Hydrophilic, 
deviation is starting at 2.8 ps. b) Hydrophobic, deviation is starting at 2.7 ps......................................... 66 
 
Figure 5.16: Correlation plot for C1500 sample, with 500 water molecules inside. a) Hydrophilic, 
deviation is starting at 2.8 ps. b) Hydrophobic, deviation is starting at 2.7 ps......................................... 68 
 
Figure 5.17: C320 sample with 20 water molecules (blue) hydrophilic and (red) hydrophobic. a) Velocity 
auto-correlation function, b) Mean square displacement. Inset shows MSD up to 5 ps........................... 69 



www.manaraa.com

vii 
 

 
Figure 5.18: C500 sample with 57 water molecules (blue) hydrophilic and (red) hydrophobic. a) Velocity 
auto-correlation function, b) Mean square displacement. Inset shows MSD up to 10 ps  ....................... 70 
 
Figure 5.19: C720 sample with 100 water molecules (blue) hydrophilic and (red) hydrophobic. a) 
Velocity auto-correlation function, b) Mean square displacement.......................................................... 71 
 
Figure 5.20: C1500 sample with 500 water molecules (blue) hydrophilic and (red) hydrophobic. a) 
Velocity auto-correlation function, b) Mean square displacement.......................................................... 72 
 
Figure 5.21: Second Legendre polynomial to calculate rotational relaxation times, (blue) hydrophilic and 
(red) hydrophobic and (green) charged samples. a)  C320 sample with 20 water molecules. b) C500 
sample with 57 water molecules. c) C720 sample with 100 water molecules. d) C1500 sample with 500 
water molecules.....................................................................................................................................73 
 
Figure 5.22: Water in the confinement feels attraction and repulsion from all cage’s atoms in all different 
directions...............................................................................................................................................75 
 
Figure 5.23: Average distance between a water molecule and all other water molecules over time for 
partially filled sample C720 with 100 water molecules inside. x-axis is number of frames which are 40 
and the total time is 100fs. Tick red color shows the average of averaged distance for molecule1 and 
molecule2..............................................................................................................................................77 
 
Figure 5.24: of partial filled sample, charged C720 with 100 water molecules inside........................... 78 
 
Appendix I: The whole sets of surfaces for topological heterogeneity (with radius of patch in 
each case) with snapshots of water droplet on corresponding surfaces.......................................... 80 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

viii 
 

 
 
 
 

List of Tables 
 

Table 3.1: Lennard-Jones parameters used in the simulations......................................................................... 17 
 
Table 4.1: Lennard-Jones parameters used in these simulations..................................................................... 27 
 

Table 4.2: Size dependence of droplet dynamics on smooth surfaces. N is the number of water molecules 
in the droplet. All numbers with standard deviation are relaxation times in ps that are calculated using 
R(t)....................................................................................................................................................... 33 
 
Table 4.3: Size dependence of relaxation times for corrugated surfaces. N is the number of water 
molecules in the droplet. All numbers with standard deviation are relaxation times in ps....................... 35 
 
Table 4.4: Number of hydrogen bonds calculated for smooth and corrugated surfaces for bulk and liquid-
solid (l-s) interfaces............................................................................................................................... 36 
 
Table 4.5: Contact angle calculated for droplet on a corrugated surface with three reference levels 
(bottom layer, middle layer, and top layer of structured surfaces) ......................................................... 37 
 
Table 5.1: Lennard-Jones parameters used in the simulations............................................................... 51 
 
Table 5.2: Initial values of k(t) and VACF (velocity auto correlation functions) for hydrophilic and 
hydrophobic samples in different. NVT ensemble was used for C320, C500 and C720 but NVE ensemble 
used for C1500...................................................................................................................................... 58 
 
Table 5.3: Summary of the results of MD simulation in NVT ensemble............................................... 67 
 
Table 5.4: Partial charge values on different confinements................................................................... 67 
 
Table 5.5: The results of MD simulation in NVE ensemble for hydrogen bonds dynamics (τHB), diffusion 
coefficients (D) and rotational relaxation times (τrotation) at 300K............................................................ 74 
 
Table 5.6: The results of MD simulation for SPC/E bulk water at T=300K............................................74 

 
 
 
 
 
 
 
 
 



www.manaraa.com

Abstract 
 

WETTING TRANSITIONS AT NANOSTRUCTURED SURFACES 
 
 

By Jamileh Seyed Yazdi 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Master of Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 2011 

Major Director: Alenka Luzar 

Ph.D, Professor, Department of Chemistry 
 

 

Shape of a droplet atop a surface heterogeneity at a nanoscale. Small aqueous 

droplets on homogeneous surfaces, surrounded by a reservoir of vapor are inherently unstable. 

In contact with supersaturated vapor, the drops will keep growing until they coalesce and form a 

contiguous aqueous phase. Alternatively, if vapor pressure is below that of the droplets, the 

droplets gradually evaporate. Departing from this common picture, when nanoscale droplets sit 

above hydrophilic patches on a heterogeneous surface, at certain conditions they can maintain a 

stable volume, determined by the pertinent contact angle and the size of the patches. Only the 

region under the droplet perimeter controls the contact angle, which in turn determines the 

drops curvature for given volume and the vapor pressure of the liquid in the drop. The drop size 

may therefore stop changing when its base just covers the hydrophilic patch. The finite range of 

water-substrate interactions, however, blurs the patch boundaries hence the nanodrop geometry 

varies with the patch size in a gradual manner. We use molecular simulations to examine this 

dependence on graphene-like surfaces with topological heterogeneity as complementing studies 

of chemical heterogeneity (John Ritchie, Master Thesis, VCU, 2010). We measure the 

microscopic analogue of the contact angle of aqueous nanodrops above circular hydrophilic or 

hydrophobic patches of varied size. For both the chemically and topographically heterogeneous 

surfaces, the results confirm the contact angle of a nanodroplet can be predicted by the local 

Cassie-Baxter mixing relation applied to the area within the interaction range from the drop’s 
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perimeter, which, in turn, enables predictions of condensation and saturated vapor pressure 

above nanopatterned hydrophilic/hydrophobic surfaces.  

 

Switchable nanowetting dynamics. Understanding the dynamic response of contact 

angle on switchable hydrophobic-hydrophilic surfaces is key to the design of nanofluidic and 

optical devices. We use molecular dynamics simulation for water droplets with different number 

of molecules on a molecularly smooth and corrugated substrate. We monitored the relaxation of 

the droplet geometry in response to a change in surface hydrophobicity. From the time 

correlation function for the height of the drop’s center of mass we estimate the rates of 

relaxation for wetting/dewetting processes following the change between hydrophobic and 

hydrophilic character of the surface. On molecularly smooth surfaces, we find similar 

forward/backward rates revealing insignificant hysteresis. Calculations on corrugated surfaces, 

however, reveal quite different relaxation times for forward (Cassie state to Wenzel state) and 

reverse processes. The observed hysteresis is associated with different friction forces between 

the droplet and the surface during advancing and receding processes. We calculate the friction 

coefficient of the corrugated surface for the forward process following the increase in surface 

hydrophilicity. We compare continuum hydrodynamic (HD) and molecular kinetic theories 

(MKT) for calculation of the friction coefficient. Although the small size of our system suggests 

the use of molecular description of the surface, incorporated in MKT, we obtain essentially equal 

friction coefficients from both theories. This information indicates an overlap between continuum 

hydrodynamics and molecular dynamics regimes, with both the HD and MKT theories being 

applicable at the nanoscopic lengthscales we consider.   

 

Water dynamics inside nanospheres. Chemical nature of a spherical confinement has 

significant effect on dynamics of water molecules outside the cage. In a separate study we 

examined the effect of chemical nature of the cage on the dynamics of water molecules inside the 

cage. Calculations have been made for variety of time correlation functions of water in four 

different sizes of spherical hydrophobic/hydrophilic confinements, Cx x=320, 500, 720, 1500 

based “hollow buckyballs”, with different spherical pore diameters. Calculated water hydrogen 

bond lifetimes, diffusion coefficients and rotational relaxation times in these systems reveal a 

distinctly different water dynamics compared to interfacial water dynamics outside the cage: 
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interestingly we find insignificant changes in time scales for water dynamics in hydrophilic and 

hydrophobic carbon cages. Even adding partial charges to hydrophilic confinement did not 

make a big effect on results compared to hydrophobic case. These findings are suggesting that in 

highly symmetric confinement water molecules do not care about the type of interaction with the 

wall because of cancellation of forces in different directions.  
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Chapter 1. Introduction 
 

For a macroscopic drop, Young’s equation relates the contact angle θ  to the three 

interfacial free energies1  

LV

SLSV

γ
γγθ −=cos         (1-1) 

         
 

Figure 1.1. Young’s contact angle. 
 

where SLγ , LVγ  , and SVγ are the surface free energies of the solid-liquid, the liquid-vapor 

and the solid-vapor interfaces. Cassie and Baxter generalized Young’s equation to 

composite surfaces whose cosine of contact angle is presumed to represent the area 

average of iθcos  of individual components covering fractional areas if  2  

2211 coscoscos θθθ ffC +=         (1-2) 

The Cassie-Baxter equation (1-2) implicitly presumes any heterogeneities to 

occur on length scales that are small compared to the size of the drop (macroscopic 

drops), thus there is no dependence on the drop location3,4. Recently McHale proposed 

using the local form of the Cassie-Baxter equation where only the region covered by the 

three phase contact line is used in determining 1f and 2f in equation (2)5. However, no 

equation of the proposed local form was presented. 

When a drop is touching a surface to wet it, at very early stage contact angle has 

its highest value. As time passes the drop shape undergoes evolution by reducing the 

contact angle. Finally the drop will reach to equilibrium state and contact angle will have 

its minimum value. This equilibrium contact angle is called static contact angle while the 

non-equilibrium, time dependent contact angle is called dynamic contact angle. In 

wetting events that contact angle is growing, it named as advancing contact angle, 

however, in dewetting processes that contact angle is reducing, it known as receding 

contact angle. Depending on the surface, advancing contact angle is always smaller or 

LV 
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equal to the receding contact angle. The difference between advancing and receding 

contact angle is called contact angle hysteresis.  

To develop new technologies like nanofluidic devices, medical and basic 

sciences, understanding the properties and behavior of water at the nanoscale is 

extremely important. In this regards the importance of surface modification for specific 

chemical and physical properties is absolutely crucial6. Construction and design of new 

materials having surface heterogeneities can be used to change/predict wetting properties 

based on the knowledge about detailed pattern of the surface4.  

Since most of the works have been done in macroscopic scale, a question that can 

be asked is “what happens at a nanoscale?” Cassie-Baxter equation is not supposed to be 

always valid for relatively small (microscopic) drops7. For nanoscale drop on a nanoscale 

roughness only local Cassie-Baxter equation may work8. Kwon and  

coworkers9 pointed out that in the case of roughness pinning/depinning processes are a 

major cause of hysteresis and any deviations from the Cassie-Baxter prediction. Thus if a 

surface is devoid of pinning (ideal smooth surface) it will show no hysteresis and will 

follow Cassie-Baxter formula9,10.  

Conventional Cassie-Baxter predictions for wetting of heterogeneous surfaces 

relate the contact angle to the average properties of the substrate under the drop. When 

surface heterogeneities occur on the lengthscale close to the size of the drops McCarthy 

and coworkers11 pointed out that the nature of the substrate at the droplet perimeter 

controls the contact angle. This distinction is relevant when the properties of this region 

deviate from the average under the drop. In the case of nanodrops the situation is further 

complicated, because the finite range of water-substrate interactions makes the definition 

of the perimeter region somewhat arbitrary12. Using molecular simulations we try to 

understand which parameters are involved to determine the shape of a sessile nanodrop in 

contact with a heterogeneous surface. In the case of macroscopic drops it is well known 

that the characteristic of the perimeter of the drop is determining the contact angle. 

Recent chemical heterogeneity58 studies, has proved that in the case of a nanodrop this 

fact is also valid and now we are going to validate this fact for topological heterogeneity. 

Therefore in a complementary study we generated a set of corrugated graphite-like model 

surfaces with different patterns for topological heterogeneity and we measured the 
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microscopic analogue of the contact angle of nanodrops containing 2000 water molecules 

above a surface patch. Our results confirm it is exclusively the border characteristics of 

the base that determine the contact angle of a nanodrop on these topologically 

heterogeneous surfaces. We showed the observed contact angle dependence on the size of 

the patch can be predicted by the local Cassie-Baxter mixing relation applied to the area 

within the interaction range from the drop’s perimeter. The important effects of surface 

heterogeneities on saturated vapor pressure of water above the droplet have been 

discussed.  

Diverse modification procedures have been used to permanently alter wettability. 

Control of wettability has been demonstrated by elegant methods including light-induced 

and electrochemical surface modifications15. These systems require chemical reactions in 

order to control wettability. 

Surface properties and functionality can change by applying external stimuli and 

therefore produce changes in the molecular structure and nanoscale features of the 

surface13.  Interfacial properties, such as wetting behavior, are defined by the molecular-

level structure of the surface. It is very useful to have a surface whose properties are 

actively under control. These surfaces are named smart surfaces/devices in surface 

engineering. Electrical switching, electrochemical switching, photo-switching, thermal 

switching, mechanical switching, environmental switching and so on are all different 

methods to switch the surface interaction to change hydrophilicity/hydrophobicity13. 

Electrowetting for example has been proposed as a novel principle for a reflective 

display14. In systems where the ratio of surface area to volume is large, the surface forces 

dominate. Therefore, switchable surfaces are ideal for nano/micro scale systems13.  

Understanding and knowing the dynamic properties and response of the 

hydrophobic/hydrophilic switchable devices will definitely help finding new applications 

for these devices in new technologies15. It is known that two physically different wetting 

states exist on structured surfaces. A droplet may fully wet the structured surface, i.e. 

completely fill the crevices of the surface, or, alternatively, rest on top of the structure 

with air trapped below the droplet. The former case is referred to as the Wenzel state, as 

the droplet senses a rough but homogeneous surface (the Wenzel regime with wet 

grooves between the posts), while the latter case is referred to as the Cassie state, as the 
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droplet senses a flat but heterogeneous surface (the Cassie regime with empty grooves 

between the posts under the drop). These two wetting states and related intermediate 

states (partial penetration of the liquid into the surface structure) have been studied 

extensively because of very different wetting behaviors observed. Transitions between 

Cassie and Wenzel states may be triggered by switching surface wettability16. Ralston 

and co-workers17,18,72 performed extensive experimental studies on droplets in Cassie and 

Wenzel states on smooth and structured surfaces and they were able to measure the 

friction coefficient of the surface. They used molecular kinetic theory (MKT)71 and 

hydrodynamics model73,74 ,19 to do so and all of their studies are for macroscopic drops. 

 
We followed their method to find friction coefficient for nanodrop on a 

nanorough surface to validate if the theory that they are using can be applied for 

nanoscale systems. After finding the timescale of the droplet’s relaxation on the smooth 

surface and scaling with the system size, we created a structured surface that is able to 

show both Cassie and Wenzel states upon switching the hydrophilicity/hydrophobicity of 

the surface. In our studies switching is induced by changing the water-surface 

attraction50. After finding the relaxation time of the water drop for this surface and 

scaling with the system size we used molecular kinetic theory and hydrodynamics model 

to estimate friction coefficient of the surface. 

 

 Encapsulation of molecules at the nano-scale provides the possibility of exploring 

the behaviour of solutions and liquids under conditions that are completely different from 

the bulk systems. Confined water has been studied in different structures like graphite 

channels20, carbon nanotubes21,22,23, silica pores24,25, and mica surfaces26, and other 

systems. Water confined in reverse micelles, RMs27,28,29, has attracted many 

investigations theoretically30,31,32,33 and experimentally34,35,36,37. As an example metal 

oxide based nanocapsules have been shown38 to provide a suitable system to study the 

behaviour of confined liquids, especially water and aqueous solutions. These studies all 

reveal general trends of confined water that differ from bulk phase. Recent computational 

study39 of water inside nanopores in general shows that water molecules organize in 

layers depending on the size and geometry of the confinement. For example, the most 
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important factors affecting the structure and dynamics of water in the confinement are 

water interactions with the confining surface and the geometry of the container. 

A perfect spherical confinement is molybdenum based nanocapsule. These 

materials are Mo132-ACET or Mo132-PHOS balls in which acetate and phosphate groups 

will result in different interaction energy between wall and water molecules.  These 

materials are synthesized during last decade and there is an ongoing neutron spin echo 

experiment on this particular system that is taking place by Jose Teixeira, Marc Henry 

and Stephane Longeville in LLB, CEA Saclay, France. But there is only one recent 

computational study so far on this system by a group of scientists in Spain39. These giant 

spherical confinements with large internal cavities are capable of encapsulating guest 

molecules. By tuning the overall charge and geometry of the internal surface with 

addition of specific ligands, the structure of the encapsulated molecules can vary. X-ray 

experiments show that water can form two well defined concentric layers with 

dodecahedral symmetry and buckyball-like structure followed by a coordination layer. 

This simulation study39 mainly used MO132(SO4) which is behaving as a hydrophilic 

sample and has a similar space for water molecules as (AOT RMs) reverse micelles with 

ratio between the total water to the total surfactant concentrations, w0, is equal to 4. They 

studied the structure of water and they found four peaks for oxygen-oxygen pair 

correlation function, g(r). They divide the cavity into 10 concentric shells. They calculate 

average number of hydrogen bonds per water molecules and they found the characteristic 

three-dimensional hydrogen bond network present in the bulk water is distorted inside the 

cavity where water organizes instead in concentric layered structures similar to those 

belonging to the buckyball family. They calculate hydrogen bond correlation function 

and they found its decay to be much slower for external layers compared to internal 

layers. Also they found hydrogen bond bridges between layers are less correlated in time 

than intralayer hydrogen bonds. They claim that their results show switches of water 

molecules between layers are rare events and involve the simultaneous switch of two 

water molecules. Another finding of their study is at long times: the system show power 

law decay in properties like the fluctuations in the number of molecules in the structures. 

We are going to validate if a simple spherical geometry without all detailed of the 

structure can lead us to the results that they found. We would like to consider the simplest 
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approximation that can still capture essential physical properties, therefore we performed 

our computer simulations in spherical geometry of “hollow buckyballs”. Our aim was to 

study the dynamics of water in these ordered confined spaces. In this recent simulation 

study only one size of the confinement with hydrophilic interaction was reported. We, on 

the other hand, studied confinements with different sizes and with different degrees of 

hydrophobicity/hydrophilicity. We studied the difference in dynamics of water in these 

confinements by calculating diffusion coefficients and rotational relaxation time and 

hydrogen bonds time correlation functions. 
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Chapter 2. Methods and models 
 
 

Water Model. We studied structure and dynamics of water droplets at a nanoscale on 

smooth and structured surfaces as well as dynamics of water in the confinements. For all 

these studies we apply the extended simple point charge (SPC/E) model40 for water. 

Despite its limitations associated with the lack of molecular flexibility and polarizability, 

SPC/E captures qualitatively and often quantitatively a large number of properties of 

water41,42. Since in our studies water properties like surface tension and diffusion 

coefficient are important and SPC/E reproduces well these two quantities, we used this 

model for water. The sketch of SPC/E water model is shown in Figure 2.1, in addition to 

the partial charges on all of the three sites. Oxygen site has Lennard-Jones parameters  

ε = 0.6502 kJ/mol , and σ = 3.166 Å. 

 

 
 

Figure 2.1. SPC/E water model. 

 
Surface Models. For smooth surfaces we took a graphene sheet consisting of carbon-like 

atoms on a hexagonal lattice. The bigger the drop that we are going to put on the surface, 

the bigger the graphene sheet required. For corrugated surface we used three-layers of 

graphite. Many atoms from second and third layers will be removed and only atoms in 

desired locations will stay to build pillars. The details of atom positions of 2nd and 3rd 

layers are based on particular problem that we need to solve. Therefore we can create 

pillars with different thickness, pillars with different empty space between them (different 

number of pillars per unit area) and different pillar’s height by starting with more 
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graphene sheets. After preparation of the surface we put a water droplet on the surface. 

To start the simulation we need to specify type of water-carbon interactions.  

 

Water surface interaction (mixing rules). The essential features of intermolecular 

interaction can approximate well by Lennard-Jones potential, which can be written as 

( ) ( )[ ]612 //4 rrULJ σσε −=        (2-1) 

 

 
Figure 2.2. Lennard-Jones potential. 

 

For applying water-surface interaction we have to use mixing rule based on parameter 

values for carbon, oxygen and hydrogen.  

 

Geometric mixing rules is using geometric mean for sigma and epsilon as below 

( ) ( ) HOIIICCCIIICCCI ,2/12/1 === σσσεεε     (2-2) 

 

Lorentz-Berthelot mixing rules is using arithmetic mean for sigma values and geometric 

mean for epsilon as follow 

( ) HOIIICCCIIICCCI ,)(
2

12/1 =+== σσσεεε     (2-3) 

 
Simulation Method. Molecular Dynamics (MD)43,44. MD is one of widely used methods 

for simulating many-body systems in which their particles are obeying Newtonian 
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mechanics. This method is a very powerful technique with excellent approximations for 

our studies. The only restriction of using MD is for very light particles such that we 

cannot ignore quantum effects. In this method we accommodate particles in simulation 

box and then based on the temperature that we want, we apply initial random velocity to 

all particles (for example using Gaussian distribution). Then we compute forces on all 

particles based on the potential that we define (for example Lennard-Jones potential). 

Then by having the force we can integrate the Newton’s equations of motion to get new 

velocity and new position of particles. These steps will repeat until the system reaches 

equilibrium and then we can sample the parameters that we are interested in. To integrate 

Newton’s equations of motion, there are numerous methods. The most common one is 

Verlet algorithm. As other versions of Verlet algorithms we can name velocity Verlet and  

Leap Frog. Another main algorithm is predictor-corrector that is also commonly used. 

There are few softwares available for MD calculations that are open source. For two 

projects, chapters 3 and 4 we used LAMMPS (“Large Scale Atomic/Molecular Massively 

Parallel Simulator”) molecular simulation package, 2010 and 2011 versions. LAMMPS is 

distributed by Sandia National Laboratories, a US Department of Energy laboratory45. 

For project in chapter 5 we used DLPOLY v2.15 code46, developed at Daresbury 

Laboratory, UK, by adding additional subroutines adopted from Christopher Daub and 

modified by Jamileh Seyed-Yazdi.    

  

Verlet algorithm.  To find new velocity and position with this algorithm we can start 

with Taylor expansion of the position of a particle, around time t, 

)(
!32

)(
)()()( 4

3
2 tOr

t
t

m

tF
ttvtrttr ∆+∆+∆+∆+=∆+ &&&  

)(
!32

)(
)()()( 4

3
2 tOr

t
t

m

tF
ttvtrttr ∆+∆−∆+∆−=∆− &&&  

By summing these two, we get 

)(
)(

)(2)()( 42 tOt
m

tF
trttrttr ∆+∆+=∆−+∆+  

This can be rewrite 

2)(
)()(2)( t

m

tF
ttrtrttr ∆+∆−−≈∆+       (2-4) 
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In this algorithm to find new position there is no need for using velocity. Calculation of 

new velocity however, can be done as follows 

)()(2)()( 3tOttvttrttr ∆+∆=∆−−∆+  

Therefore 

)(
2

)()(
)( 2tO

t

ttrttr
tv ∆+

∆
∆−−∆+=        (2-5) 

 

Long range electrostatic interactions. Electrostatic interaction, (Coulomb interaction), 

which falls off at the rate of r-1 (equation 2-6), is a long-ranged interaction. Long-ranged 

interactions in molecular simulation are usually difficult to calculate.  

∑
≠

=
ji ij

ji
Coulomb r

qq
E

επ4
         (2-6) 

where iq and jq are the partial charges on atoms i and j respectively, and ε  is dielectric 

constant. Ewald summation method47, and its other extensions like SPME48 (Smooth 

Particle Mesh Ewald) and PPPM49 (Particle-Particle-Particle Mesh). In this method 

electrostatic interaction can be split to two parts using an error function and a 

complementary error function.  

∫
−=

x
t dtexerf

0

22
)(

π
         (2-7) 

)(1)( xerfxerfc −=          (2-8) 

 

)(xerfc quickly vanishes to zero as x increases so this part is a short-ranged interaction 

that can be summed in real space. )(xerf is Fourier transformed into a reciprocal space 

that also called k space, since its sum converges quickly in k space. Equation (2-9) has 

electrostatic interaction after Ewald sum treatment. 
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Structural and Thermodynamics properties 

 

a) Contact Angle Calculations. Contact angle of water droplet has been calculated using 

standard procedures. We adapted the technique developed by Werder et al.50 to determine 

the microscopic analogue of the contact angle, which basically entails fitting the cross-

section of the droplet to a truncated circle. We obtained water isochore profiles from 

simulation trajectories by introducing cylindrical bins using a reference level and the 

surface normal through the center of mass of the droplet as reference axis. The bins have 

a height of 0.5 Å in the z-direction and are of equal volume. The radial bin boundaries are 

located at πδ /Airi =  for i=1,…,Nbin with a base area per bin of Aδ =50Å2.  To find the 

water contact angle, we used a two-step procedure as described by de Ruijter et al.51. 

First, the location of the equimolar dividing surface is determined within every single 

horizontal layer of the binned drop. The equimolar dividing surface is defined as the 

surface where the average density of the water drop decreases by 50 percent from the 

density of liquid water. This dividing surface is found by sectioning the water drop into 

horizontal layers. Each layer is divided into radial bins where the density profile is 

measured. From this profile the equimolar dividing line is calculated. Second, a circular 

best fit through these points is extrapolated to the graphite surface where the contact 

angle, θ , is measured.  

 

b) Hydrogen bonds. There are two most common definitions of hydrogen bonds, 

geometric52,53 and energetic54,55. In geometric definition two water molecules are 

considered to share a hydrogen bond when oxygen-oxygen distance 5.3<OOr Å, the 

oxygen-hydrogen distance 45.2<OHr Å and the angle between OOr  and OHr  vectors is 

less than 30°. In our analysis, interfacial hydrogen bonds involve at least one molecule 

within COσ (3.19 Å) of one of the substrate atoms. Energetic definition considers two 

water molecules to be hydrogen bonded if their oxygen-oxygen distance 5.3<OOr Å and 
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their interaction energy is less than the threshold energy EHB over a duration exceeding a 

minimum threshold time. 

 

Dynamic properties 

a) Time Correlation Functions. Using definitions from statistical mechanics56 we can 

define and calculate time correlation functions. If )(tAδ show instantaneous deviation or 

fluctuation in A(t)  from its time independent equilibrium average A  

AtAtA −= )()(δ          (2-10) 

The correlation between )(tAδ and an instantaneous or spontaneous fluctuation at time 

zero is 

2
)()0()()0()( AtAAtAAtC −== δδ          (2-11) 

In equilibration, the correlation between dynamical variables at different times should 

depend on the separation between theses times only, and not the absolute value of time. 

Thus 

tttfortAtAtC ′−′′=′′′= ,)()()( δδ       (2-12) 

As a special case, 

 

)0()(

)()0()(

AtA

tAAtC

δδ
δδ

−=

=
         (2-13) 

Switching the order of these two averaged quantities, gives 

)(

)()0()(

tC

tAAtC

−=
−= δδ

         (2-14) 

At small times, 

 

 ( )2)0()0()0( AAAC δδδ ==        (2-15) 

At large times, )(tAδ will become uncorrelated to )0(Aδ . Thus 

∞→→ tastAAtC ,)()0()( δδ        (2-16) 

And since 0=Aδ  
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∞→→ tastC 0)(        (2-17) 

Values close to one show a high degree of correlation and values close to 0 are indicating 

no correlations. We can calculate correlation time by doing time integral of correlation 

function from 0 to ∞. There is a high interest toward correlation functions in computer 

simulation:  

a) in studying of fluid these functions give a clear picture of the dynamics,  

b) we can often relate the time integral of these functions directly to macroscopic 

transport coefficients,  

c) Fourier transform of these functions often can be related to experimental spectra. 

 

b) Diffusion Coefficient. Diffusion coefficient, D, in three dimensions is given by 

integration of the velocity autocorrelation function 

)0(.)(
3

1

0

ii vtvdtD
rr

∫
∞

=         (2-18) 

iv
r

is the velocity of center of mass of a single molecule. The corresponding Einstein 

relation that is valid at long time is based on mean square displacement 

2
)0(.)(

3

1
2 ii rtrDt

rr=         (2-19) 

ir
r

is the molecule position. In using Einstein relation we should not switch from one 

periodic image to another. 

  
 
c) Rotational Dynamics. A useful quantity to measure is the time required for water 

molecules to reorient themselves. It can be measured by computing the time 

autocorrelation functions of n’th Legendre polynomial of the cosine of the angle spanned 

by the axes of each water molecule between time 0 and time t, 

( ))0(.)(, ααα utuPC ln

rr=         (2-20) 

)(tuα
r

is a unit vector along the molecular axis of interest measured at t. The 

reorientational times will be obtained by integrating the orientational correlation function 

of 2nd Legendre polynomial, P2(t), which is 
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( )1cos3
2

1
)(cos 2

2 −= θθP         (2-21) 

The rate of decay, τ2, is determines the nuclear magnetic resonance, NMR, relaxation 

time which is associated with intramolecular dipole-dipole coupling.  
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Chapter 3. Shape of a droplet atop a surface heterogeneity at the 
nanoscale 

 
 
 

Our present study reaffirms the importance of surface properties in the region 

adjacent to the three phase contact line of a nanoscale droplet. This approach tests 

generalizations of conventional surface thermodynamics to small length scale system 

relevant to nanofluidics and design of surface-patterned nanomaterials. We examine the 

differences that inevitably separate macroscopic and nanoscale systems, as a continuum 

picture holds only approximately at the nano and molecular levels. Our computer 

experiments test how water-substrate interaction beneath the drop’s core or at its 

perimeter determines the contact angle. Secondly, we examine changes in contact angle 

as a hydrophilic surface beneath the drop’s core approaches and eventually extends 

beyond the three phase contact line. We specifically consider surface heterogeneities 

whose sizes are comparable to the size of the droplets. Experimentally, this situation has 

been tested on surfaces with macroscopic drops and surface patches57
. We used molecular 

simulations to probe the role of tiny heterogeneities comparable to the size of the 

nanodroplets on the surface. Molecular simulations provide an ideal framework for 

studies of nanoscale systems which are not accessible to laboratory measurements. We 

consider model graphene-like surfaces with hydrophobic and hydrophilic domains. In the 

model, the hydrophilicity is controlled by degree of surface roughness. We performed 

calculations for a sequence of systems to study topological heterogeneity by increasing 

the radius of a circular hydrophilic patch and measuring the contact angle by starting 

from a pure corrugated surface in which a water droplet can only be in Cassie state. In 

analogy with studies of chemical heterogeneity58, we confirmed that the surface 

properties at the drop’s perimeter determined the contact angle on surfaces with 

topological heterogeneity. We further investigated the influence of the range of 

water/surface interaction as the patch contour approaches the drop’s three phase contact 

line. To this end we examined the contact angle as a function of the radius of an 

expanding circular patch beneath the drop. Plotting the contact angle as a function of 

patch radius we identify a threshold patch size corresponding to a considerable decrease 

in contact angle. In our molecular simulations we incrementally increased the radius of 
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the circular hydrophilic patch beneath the drop until the contact angle converged to the 

value of our pure hydrophilic surface (that means a surface with fully occupied 2nd and 

3rd graphite layers and hence no corrugation). We found essentially identical behavior for 

our topological heterogeneities with what has been found for chemical heterogeneity (the 

work has been done by John Ritchie58). 

 

Simulation Methodology. In the case of water droplets on chemical and topological 

heterogeneous surfaces, the computer simulations are carried out by the LAMMPS 

molecular simulation package 2010 and 2011 versions45 in NVT ensemble with 

temperature 300K maintained by Nose-Hoover thermostat59 with 100fs time constant. 

Because of vapor/liquid coexistence, the average pressure in the system corresponded to 

the saturated vapor pressure above the drop at given T. Verlet integrator was used with 

simulation time step 1 fs. Lennard-Jones interactions are truncated at 14.0 Å. Long-range 

electrostatic interactions are treated by particle-particle-particle mesh solver (pppm) with 

a real space cutoff of 14.0 Å, and precision tolerance of 10-5. Simulation box is a 

rectangular prism, with box edges Lx = 117.9 Å, Ly = 119.1 Å, and Lz = 300 Å and 

periodic boundary conditions are imposed throughout. In order to speed up the 

calculations, the surfaces are frozen in place during the simulation and the SHAKE 

algorithm60 is used to maintain the internal geometry of the water molecules. 

 

Water droplets containing 2000 molecules are simulated interacting with a corrugated 

surface for topological heterogeneity, with expanding a patch in the middle of these 

surfaces. The water-graphene interaction parameters (Table 3.1) were calculated using 

the geometric averages shown in the equations below.  

( )
( ) 2/1

2/1

OOCCCO

OOCCCO

σσσ
εεε

=

=
         (3-1) 

 

where σCO, σCC, and σOO are the carbon-oxygen, carbon-carbon, and oxygen-oxygen 

separation distance at minimum potential, and εCO, εCC, and εOO are the Lennard-Jones 

minimum potential energies50. These choices have been made for consistence with 
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completed studies on chemically heterogeneous surfaces with which we compare our new 

results.  

Water-Carbon Interaction. We used Lennard-Jones surface interactions corresponding to 

a hydrophilic surface with a carbon-oxygen interaction energy εCO of 0.120 kcal/mol for 

entire surface and all our simulations following Werder and coworkers50. 

 

 

Table 3.1. Lennard-Jones parameters used in the simulations. 
 

 εCO 
(kcal/mol) 

σCO(Å) εCC 

(kcal/mol) 
σCC(Å) εOO 

(kcal/mol) 
σOO(Å) 

Topological 
Heterogeneity 0.120 3.190 0.092 3.214 0.155 3.165 

 

Topological heterogeneity. We created a corrugated surface with pillars made from two 

layers of atoms grown on the graphene surface consisting of 5376  

carbon-like atoms. The positions of pillar atoms in the 2nd and 3rd layers were the same as 

positions of carbon atoms of graphite in the first layer with lateral coordinates of the 

pillars, while we leave all other atom positions in these two layers unoccupied  

(empty spaces between pillars). The distances between pillars in x and y directions are  

∆x=4.912 Å and ∆y=4.254 Å (Figure 3.1). These distances are sufficiently small to 

prevent any penetration of water into the grooves. This corrugated surface was made 

from 8064 carbon-like atoms. We start to grow a circular patch in the middle of this 

corrugated surface by replacing the pillars and intervening space by fully occupied 

graphite in 2nd and 3rd layers (with the patch radius starting from 10 Å and increased to  

55 Å in 5 Å intervals). Subnanoscale corrugations render the surface more hydrophobic, a 

behavior deviating from predictions of Wenzel equation61, as demonstrated in previous 

work done in Dr. Luzar’s group62, and by Mittal and Hummer63. When the patch radius is 

zero this particular surface is uniformly hydrophobic. The hydrophilic extreme is the case 

with infinite radius of the patch, meaning that the ‘patch’ is extended over the entire 

surface with 16128 carbon-like atoms. 
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Figure 3.1. Schematic description of the surface covered with pillars for the case of topological 

heterogeneity. 

 
 

After preparing topological heterogeneity as explained in chapter 2, our simulations were 

initiated by putting a water droplet with 2000 molecules on these surfaces at the center of 

the patch. We equilibrated the system and then used configurations from 1 to 3ns 

trajectories to measure the contact angle (Figure 3.3). Figure 3.2 shows snapshots of three 

surfaces with different patch radius (top row) as well as water droplet on these surfaces 

(bottom row). The whole set of surfaces and snapshots of equilibrated drops are shown in 

Appendix I. 

 

Figure 3.2. Three surfaces with rp (patch radius) rp=0 Å, rp=30Å and rp=∞ from left to right  
(top row). Snapshots of 2000 molecule water droplet on corresponding surfaces (bottom row). 

 

 

Contact angles have been measured using the method explained in chapter 2. Figure 3.2 

shows typical drop profiles for three different surfaces.  

∆x ∆y 
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Figure 3.3. Drop profiles for three different surfaces, the most hydrophilic (homogeneous 

surface, rp → ∞ Å), the most hydrophobic (rp=0 Å) and an intermediate patch size rp=30 Å. Black 

solid lines are fitted to the simulated data. Dashed line represents the surface, where the contact 

angles were measured. R is the distance from the main axis of the drop and height is the height of 

the drop measured from the top layer, 9.89 Å. 

 

In Figure 3.4 we show contact angles for all different patch radii for topological 

heterogeneity (blue points). We compare our results with those obtained on surfaces with 

chemical heterogeneity58. 

 
Figure 3.4. Simulated contact angle for topological (blue circles) and chemical (red diamonds) 
heterogeneity vs. the radius of the patch. Error bars are within the symbol sizes. Data points for 
chemical heterogeneity (red diamonds) are taken from ref. 58 for comparison to our simulation 
results (blue circles). Lines are guides to the eye. 
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Analysis. Because of perpetual droplet shape fluctuations and finite range of 

water/substrate interactions, the apparent surface properties affecting the droplet near the 

patch perimeter change in a gradual rather than abrupt fashion. This gradual change is 

incorporated in the local form of Cassie-Baxter equation5 where we used fractions 1f and 

2f  calculated within the range of interaction from the drop’s perimeter. To enable a 

consistent comparison of our results for topological heterogeneity with the results of the 

work done by John Ritchie for chemical heterogeneity58 we used identical form of local 

Cassie-Baxter relation for our simulation. The area of the hydrophilic patch, (piA ), and 

the net area of the range of interaction, (riA ), were calculated to estimate the apparent 

fractional areas 1f  and 2f  in the proximity of the perimeter as follows: 

 

( ) ( )22
ididri rrrrA −−+= ππ         (3-2) 

( )22
idppi rrrA −−= ππ         (3-3) 

 

Above, dr is the radius of the drop’s base obtained from the simulation (i.e. perimeterr ), 

pr the radius of the patch, and 1f  is the fractional area of hydrophilic patch overlapping 

the area of the range of interaction (all introduced parameters are shown in Figure 3.5) 
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Figure 3.5.  Parameters used to calculate local form of the Cassie-Baxter equation. Figures are 
taken from John Ritchie’s Master Thesis58.  

 

2f is the area fraction of the hydrophobic patch overlapping the area of range of 

interaction 12 1 ff −= . Local values of 1f  and 2f are substituted into equation (1-2) to 

calculate Cassie-Baxter contact angles for comparison with our simulation results  

(topological heterogeneity) knowing θ1=55.2° and θ2=132.7°. Related results for 

chemical heterogeneity from the work done by John Ritchie58 are shown as well  

(Figure 3.7). 

Because of their nanoscale dimensions, the geometry of small droplets we 

consider may deviate from the ideal shape of a truncated sphere and may only 

approximately follow the Young equation (equation 1-1). A recent systematic analysis64, 

and previous works50,62 show Young equation is obeyed surprisingly well for O(103) 

molecule drops, with small deviation observed primarily on very hydrophilic surfaces. In 

this work, we examined the sphericity of nanodrops on varied surfaces. As we observe 

significant temporal shape fluctuations, we concentrated on long-time averages. 

Specifically, in Figures 3.6a and 3.6b we compare the average perimeter radii from 

simulations with the values corresponding to the shape of the ideal truncated sphere 

described5 by the equations of 

 

θ
βπ

sin,
3

3/1

dropsphericalddropspherical Rr
V

R =







=      (3-5) 
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Here Rspherical drop is the radius of curvature of the spherical drop, dr  is perimeterr , V is the 

volume of the drop (with good approximation we multiply the number of water 

molecules by 30 Å3 which is the volume of one water molecule) and ( )θβ is a function of 

contact angle defined as 

( ) ( ) ( )θθθθθβ cos2cos1coscos32 23 +−=+−=      (3-6) 

 

 

Figure 3.6. Comparison of radius of the perimeter, rd, obtained from molecular simulation (solid 
circles) and predicted values (solid squares) from equations (3-5) and (3-6) as a function of patch 
radius for (a) chemical and (b) topological heterogeneity. Lines are guides to the eye. Error bars 
are within the symbol sizes. (a) is based on the results of John Ritchie58 for chemical 
heterogeneity for comparison.  

 

 

The good agreement between simulated radii and spherical-drop predictions indicate 

negligible droplet distortion when surfaces are predominantly hydrophobic. Increasing 

the size of chemical or topological heterogeneity with hydrophilic characteristics results 

in small deviations between the two sets of data, consistent with comparisons between 

geometric and thermodynamic contact angles of nanodroplets in the literature64. We also 

note the increased uncertainty in simulated contact angle determination on hydrophilic 

surfaces. 

 

Interfacial Hydrogen Bonds. We used geometric definition in calculation of hydrogen 

bonds52,53. In our analysis, interfacial hydrogen bonds involve at least one molecule 

within COσ (3.19 Å) from one of the substrate atoms. In the case of topological 

heterogeneity we used snapshots from 1 to 3ns simulation to calculate the number of 
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interfacial hydrogen bonds in solid-liquid interface for two extreme cases (pure 

hydrophilic, 100% coverage and pure hydrophobic, 25% coverage). We defined coverage 

as the number of atoms in the top layer divided by number of atoms in the bottom layer. 

We found the number of interfacial hydrogen bonds per molecule for 100% coverage  

3.1 ± 0.1 and for 25% coverage 2.6 ± 0.6 in good agreement with previous results62. The 

changes we observe can be attributed to density depletion of water molecules in the 

interfacial layer when the drop on the corrugated surface assumes a Cassie-like state as 

opposed to the higher density in aqueous surface layer on the more hydrophilic high-

coverage surfaces. 

 

Results and Discussion. Comparing the relation between contact angle and the patch 

radius shows the same trend for chemical and topological heterogeneity (Figure 3.7) but 

for smaller patch radius the topological heterogeneity shows higher values of contact 

angle compared with chemical heterogeneity. The reason is that in the topologically 

heterogeneous systems we have three layers of atoms with separation of graphite sheets 

(3.4 Å), compared with chemically heterogeneous systems that have only one layer of 

atoms. The extra atoms in topological heterogeneous systems cause the difference in 

contact angles for lower and higher patch radii. Based on the results from Figure 3.4 we 

can conclude that with interaction range r i ~ 5 Å for both cases we find the transition 

distance at about twice the interaction range added to the difference of the perimeter 

radius of the drop at the lowest and the highest patch radius, di rr ∆+2 . This model works 

for both systems, with chemical and topological heterogeneity65. Figure 3.7 shows that 

for these two systems local Cassie-Baxter equation gives a good agreement with 

simulation results for entire data sets. That is consistent with findings of others8,10. 

Figures 3.6a and 3.6b show that predicted values for the radius of the perimeter of the 

drop are in close agreement with simulation results.  

The average number of interfacial hydrogen bonds calculated for a pure 

hydrophilic surface (extended patch, 100% coverage) that has a direct impact on the 

interfacial free energy of the water-surface interface, which affects the contact angles, 

shows that the droplet is in tighter contact with the surface (lowerCθ ) compared with the 

case of hydrophobic surface (pure corrugated surface, zero patch radius, 25% coverage) 
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that shows the droplet is in the Cassie state (higher Cθ ). Because of its thermal motion, 

the droplet is moving and bouncing on hydrophobic surface. The instability of the droplet 

position in contact with the surface explains large error bars of the reported data.  

 

 

Figure 3.7. Comparison of contact angles based on simulation and local Cassie-Baxter 
predictions for topological (maroon circles: simulation results, purple squares: predicted Cassie-
Baxter values) and chemical heterogeneity (blue diamonds: simulation results, green downward 
triangles: predicted Cassie-Baxter values). Error bars are within the symbol sizes. Solid lines are 
guide to the eye. Data points for chemical heterogeneity are taken from John Ritchie’s results58 
for comparison. 
 

Conclusion. We examined the relation between the contact angle of an aqueous 

nanodrop and surface-water interaction energy at the perimeter and beneath the drop. We 

simulate nanodroplets on graphene-like surfaces having hydrophobic and hydrophilic 

interaction energy at the perimeter and beneath the drop. The microscopic analogue of the 

contact angle was extracted from simulation trajectory data. We confirm the contact 

angle is exclusively related to the surface interaction energy in the region adjacent to the 

drop’s perimeter. We test the role of finite range of substrate-water interaction when the 

area of a circular hydrophilic patch beneath the drop’s core is incrementally expanded 

until the contact angle is equivalent to that on the pure hydrophilic surface. We identify a 

range of interaction corresponding to a considerable drop in contact angle when plotting 

contact angle as a function of patch size. We show the observed contact angle 

dependence on the size of the patch can be predicted by the Cassie-Baxter mixing relation 
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when limited to the area within the interaction range from the drop’s perimeter which is 

about 5 Å for both topological and chemical heterogeneities.  

Finally we discuss implications of surface heterogeneities on saturated vapor 

pressure of water above the droplet.  In equilibrium, the droplet curvature alone defines 

the chemical potential inside a drop and hence the saturated vapor pressure in the system, 

independently of the nature of the substrate. The vapor pressure above the drop is bigger 

than the corresponding value above the bulk liquid. Considering Kelvin equation we have 

three situations. First, if µ (chemical potential) inside the drop exceeds µ outside the drop, 

evaporation exceeds condensation (the drop will gradually decrease in size) but the 

thermodynamic contact angle and curvature will stay the same (metastability due to 

perimeter pinning can cause deviations from Young’s contact angle) unless the droplet 

perimeter crosses the patch border. Second, if µ inside the drop is equal to µ outside the 

drop, the drop size will stay the same. Last, when µ inside the drop is below µ outside 

(supersaturation), condensation and droplet growth will take place. 

When, due to the droplet growth, or shrinking, the droplet perimeter crosses the 

border of the underlying hydrophilic patch, the drop’s contact angle, curvature, and water 

chemical potential will be affected. If, due to condensation, the droplet base outgrows the 

size of the hydrophilic patch, the curvature and chemical potential will increase, thus 

slowing and eventually preventing further droplet growth. In the opposite scenario, the 

perimeter of a shrinking droplet can move over from a hydrophilic region to the area 

covered by the hydrophilic patch. In response, the curvature will be reduced, and the 

chemical potential decrease. Again, the droplet shape can reach an apparent equilibrium 

as chemical potentials in the drop and vapor converge. Static situations we discuss above 

are metastable with respect to the bulk liquid and require vapor supersaturation. 
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Chapter 4. Switchable Nano-Wetting Dynamics 
 
 

Surface properties can change by external stimuli and therefore produce changes 

in the molecular structure and nanoscale features of the surface. Interfacial properties, 

such as wetting behavior, are determined by the composition and molecular-level 

structure of the surface. It is very useful to have surface properties where are actively 

under control. These surfaces are named smart surfaces/devices in surface engineering. 

One of the ways in which surfaces can be controlled is by switching its properties.  

The wetting and dewetting of solid surfaces occur in nature and are also central to 

a number of biological processes and industrial applications. Systematic studies of 

wetting processes have predominantly involved equilibrium, or static, measurements. 

However, in most cases it is the dynamic wetting and dewetting behavior that is of 

practical relevance. The wetting behavior is generally characterized by the contact angle. 

In the dynamic systems the contact angle varies with the speed and direction of 

movement of the contact line. Investigators have developed models that relate the 

perimeter velocity and hence the rate of contact angle change to readily measured 

properties such as liquid viscosity, surface or interfacial tension, and the static contact 

angle and friction coefficient. Most of the models may be broadly classified as 

emphasizing hydrodynamic or molecular kinetic aspects or combinations of the two, with 

a recent more general theory proposed66. In the hydrodynamic approach the role of the 

solid surface is discounted, whereas in the molecular kinetic approach the microscopic 

properties of the solid surface are explicitly taken into account66. The velocity of wetting 

depends on the intrinsic wettability of the solid surface in such a way that there exists an 

optimum contact angle at which the velocity of wetting has the highest value67. 

 
Simulation Methodology. Computer simulations are carried out by the LAMMPS 

package in NVT ensemble with temperature 300K maintained by Nose-Hoover 

thermostat with 100fs time constant. Because of vapor/liquid coexistence, the average 

pressure in the system corresponds to the saturated vapor pressure above the drop at 

given T. Verlet integrator is used with simulation time step 1 fs. Lennard-Jones and 

Coulomb nonbonded pair-wise interactions are truncated at 11.0 Å for smooth surface 
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and 20.0 Å for corrugated surfaces. Long-range electrostatic interactions are treated by 

particle-particle-particle mesh solver (pppm) with a real space cutoff of 11.0 Å and  

20.0 Å respectively, and precision tolerance of 10-5. Simulation box is a rectangular 

prism, with box edges Lx = 117.9 Å, Ly = 119.1 Å, and Lz = 300 Å and periodic boundary 

conditions are imposed throughout. In order to speed up the calculations, the surfaces are 

frozen in place during the simulation and the SHAKE algorithm60 is used to maintain the 

internal geometry of the water molecules. 

We simulated water drops containing 500, 1000, 2000, 4000 and 8000 molecules 

on a smooth surface and water droplets with 1000, 2000 and 4000 water molecules on 

corrugated surface. We change hydrophilicity and hydrophobicity of the surface by 

changing Lennard-Jones energy parameters according to Werder et. al50. The water-

graphene interaction parameters were calculated using the Lorentz-Berthelot mixing rules 

shown in the equations below for consistency with Werder et al. and others.   

 

( )

( )OOCCCO

OOCCCO

σσσ

εεε

+=

=

2

1

2/1

         (4-1) 

 

where σCO, σCC, and σOO are the carbon-oxygen, carbon-carbon, and oxygen-oxygen 

separation distance at minimum potential, and εCO, εCC, and εOO are the Lennard-Jones 

minimum potential energies. Table 4-1 contains all Lennard-Jones parameters that have 

been used in these simulations. In smooth and corrugated surfaces we start the simulation 

by putting a droplet on a hydrophobic surface and then we switch the surface to 

hydrophilic by changing the interaction between water and the surface (see details 

below). 

Table 4-1. Lennard-Jones parameters used in these simulations. 
  

 
εCO 

(kcal/mol) 
σCO(Å) 

εCC 

(kcal/mol) 
σCC(Å) 

εOO 

(kcal/mol) 
σOO(Å) 

Hydrophobic 
Smooth 

0.060 3.190 0.023 3.214 0.155 3.165 

Hydrophilic 
Smooth/structured 

0.150 3.190 0.144 3.214 0.155 3.165 

Hydrophobic 
Structured 

0.075 3.190 0.036 3.214 0.155 3.165 
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Smooth surfaces. Smooth Surfaces. For smooth surfaces we took a graphene sheet 

consisting of 5376 carbon-like atoms for smaller droplets with 500, 1000 and 2000 water 

molecules and a surface of a graphene sheet consisting of 21504 carbon-like atoms for 

bigger droplets containing 4000 and 8000 water molecules. In each case we started with a 

water droplet pre-equilibrated on a hydrophobic surface of a graphene sheet. Using the 

Lennard-Jones parameters mentioned above, see Appendix II (case 21 from Werder et. 

al.50 for hydrophilic surface, corresponding to contact angle ~29° and case 17 for 

hydrophobic surface, corresponding to contact angle ~128°), pure hydrophobic and 

hydrophilic surfaces were created. Following an equilibration time (~300 ps) of a water 

droplet on hydrophobic surface, by changing Lennard-Jones parameters we switch the 

surface into hydrophilic and measure the relaxation time of the water droplet (we call this 

a forward process). Relaxation times depend on the size of the droplet (see Table 4.2). 

After the new equilibration time, by changing the Lennard-Jones parameters, we switch 

the surface back to hydrophobic and measure the relaxation time of the water droplet (we 

call this as backward/reverse process). Figure 4.1 shows a relaxation process of a water 

droplet with 2000 molecules on a smooth surface. 

 

Figure 4.1. From left to right starting from hydrophobic surface, snapshots of 2000 molecule 
droplet’s relaxation on a smooth surface. 

 

Corrugated surfaces. Corrugated surface with Cassie and Wenzel features. We created 

a corrugated surface with pillars made from two layers of atoms grown on the graphene 

surface consisting of 5376 carbon-like atoms as bottom layer to create a structured 

surface with 6048 atoms. If we define the coverage for structured (corrugated) surfaces as 

the number of atoms on the top layer divided by number of atoms on the bottom layer, 

our constructed surface has the coverage of 1/16. 
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Figure 4.2. Left: snapshot of corrugated surface (top view). Right: schematic description of the 
surface covered with pillars for the case of corrugated surface with Cassie and Wenzel features. 

 
We created a corrugated surface with pillars made from two layers of atoms grown on the 

graphene surface consisting of 5376 carbon-like atoms as bottom layer to create a 

structured surface with 6048 atoms (Figure 4.2). The distance between pillars in x and y 

directions are ∆x=8.6 Å and ∆y=7.8 Å and pillars have a thickness of dx=1.22 Å and 

dy=0.7Å (Figure 4.2). Lennard-Jones parameters used for this case are fixed as shown in 

Table 4.1 (case 21 from Werder et. al.50 for hydrophilic surface, that corresponds to 

contact angle ~29°, and case 2 from Werder et. al. for hydrophobic surface, that 

corresponds to contact angle ~110°). See Appendix II.  

This particular structured surface has been selected out of many trial surfaces with 

different coverages because of its ability to undergo a transition between Cassie-Baxter 

and Wenzel states upon switching the surface from hydrophilic to hydrophobic and vice 

versa. Snapshots of the water droplet for the case of 2000 water molecules are presented 

in Figure 4.3 for structured (corrugated) surfaces.  

 
                                  Forward 
                              Wenzel                                                               Cassie-Baxter 

                          Backward/Reverse 

 

Figure 4.3. Snapshots of water droplet on corrugated surfaces from molecular dynamics 
trajectory. Left: droplet in Wenzel state; Right: droplet in Cassie state. 

∆x 

∆y 
 

dy 
 

dx 



www.manaraa.com

 30

After equilibration of the droplet on hydrophobic surface in Cassie state, we 

change Lennard-Jones parameters to apply a hydrophilic interaction which means we 

switch the surface from hydrophobic to hydrophilic.  After ~300 ps equilibration time, 

the droplet reaches the Wenzel state. Interestingly, if we switch the surface back to 

hydrophobic again, by changing Lennard-Jones parameters to their original values, the 

droplet will return to the Cassie state. We name these two processes forward and 

backward/reverse. In general there is a free energy barrier between these two states on 

every surface. For our corrugated surface going from Cassie to Wenzel state and vice 

versa is relatively fast (~45 and ~38 ps respectively) which means the free energy barrier 

between these two states (Cassie/Baxter and Wenzel) is rather small. When the drop 

reaches the Cassie state, because of its thermal motion, it moves around, wetting- and 

dewetting the surface over time occasionally it bounces away from the surface. This can 

happen if the water-surface interaction is very weak and the drop is elevated above the 

height that is out of the interaction range with the surface. In these cases the droplet tends 

to assume a nearly spherical shape.  If the starting configuration corresponds to say a 

120° contact angle, as the droplet approaches a more spherical shape, there will be a net 

force pushing the drop away from the surface, and it can suffice to push the drop out of 

contact in the absence of gravity (we should notice that roughness of hydrophobic 

surfaces enhances their hydrophobicity62). Of course all of these depend on the initial 

velocity distribution of the water molecules in the drop at the switching time. The 

detachment happened in about ten percent for a droplet with 2000 water molecules and 

more than seventy percent of the cases for droplets with 1000 water molecules and about 

five percent of the cases for the drop with 4000 water molecules. The likelihood of 

detachment hence rapidly decreased with the mass of the droplet and its size. To study 

the rate of the droplet response characterized in terms of droplet relaxation times in 

reverse (hydrophilic to hydrophobic) process we analyzed the runs during which the drop 

stayed close to the surface over ~5 ns simulation time and discarded those at which the 

drop flew away from the surface. 

 

Analysis and Results. Time Correlation Functions. For water droplet on smooth and 

corrugated surfaces, calculation of the time correlation functions for the height of the 
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center of mass, h(t), of the nanodrop enabled us to estimate the rates of the microscopic 

analogue of the contact angle relaxation for wetting/dewetting processes (Figure 4.4). We 

used two characteristic time correlation functions, C(t) and R(t) to characterize the 

dynamics: 

C(t) describes dynamics of fluctuations around equilibrium (using many time origins) 
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R(t) is defines by the same equation as C(t), but the time origin is fixed at surface 
switching time (Figure 4.5) 
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In these equations h(t) is the height of the center of mass of the droplet as a function of 

time (Figure 4.4), h(0) is the initial value of the height of the center of mass and h(∞) is 

equilibrated value for the height of the center of mass. 

  
Figure 4.4. Variation of the height of the center of mass for smooth (left) and corrugated surface 

(right).  
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Figure 4.5. Time correlation functions, R(t), of the height of the center of mass for smooth (top) 

and corrugated surfaces (bottom). Insets are time correlation functions in logarithmic scale. 
 
 

Scaling with the system size. In order to study scaling of relaxation time with the system 

size first we modelled droplets containing 500, 1000, 2000, 4000 and 8000 molecules of 

SPC/E water on a molecularly smooth substrate and 1000, 2000 and 4000 molecules on 

corrugated surface. We completed time correlation functions calculations for these 

different system sizes of the droplet to see how the relaxation times scale with system 
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size. Table 4.2 shows the results for characteristic time scaling of C(t) and R(t) on smooth 

surfaces. Results show that reverse process (switching from hydrophilic to hydrophobic) 

is always faster than forward process (switching from hydrophobic to hydrophilic) for 

both smooth and corrugated surfaces. The difference can be rationalized by stronger 

perimeter pinning on surfaces with comparatively stronger substrate/water attraction. A 

similar difference has been observed when comparing experimental spreading and 

retraction times of microscopic ionic-liquid droplets on switchable surfaces, controlled by 

the application of electric field68. 

 
            Table 4.2. Size dependence of droplet dynamics on smooth surfaces. N is the number of 
water molecules in the droplet. All numbers with standard deviation are relaxation times in ps that 
are calculated using R(t). 

 
N 

(smooth) Forward τC(t) /ps Reverse τC(t) /ps Forward τR(t) /ps Reverse τR(t) /ps 

500 31.4± 2.0 25.3±2.5 25.9±1.1 25.6±1.6 
1000 39.0±1.5 30.1±1.5 31.7±0.7 27.5±1.1 
2000 52.5±0.5 36.7±1.1 45.2±0.9 38.0±1.8 
4000 64.8±1.0 43.4±1.3 55.3±1.0 43.4±1.5 
8000 87.6±1.1 58.0±1.4 73.8±1.2 59.2±1.6 

 
The slopes on the log-log plots of characteristic time versus droplet size on smooth 

surfaces (Figure 4.6) give scaling exponents of 0.38 for forward process (triangles, 

switching from hydrophobic to hydrophilic) and 0.3 for backward process (circles, 

switching from hydrophilic to hydrophobic), or ~ 0.34 on average. It means that for 

smooth surfaces time scale is proportional to N0.34. This value is consistent with a simple 

analytic estimate obtained as follows. 

The driving force for spreading the droplet is related to the surface tensions of the 

liquid times the circumference of the droplet (l ) which is a circle with radius Rc as 

follows   

c
i

i
idf Rl

r

A
F πγ 2~ ∝

∂
∂

∑        (4-3) 

The sum comprises solid/liquid, solid/vapour and liquid/vapour terms. For any specified 

contact angle, the volume of the drop, is proportional to 3
cR . Therefore 3/1NRc ∝ . 
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From dynamics we know that the distance traveled by a particle in one direction is 

proportional to the acceleration and time squared. So in the case of water droplet, from 

Newton second law we can replace the driving force with 3/1NRF c ∝∝  and also mass, 

Nm ∝ , then acceleration is proportional to 3/2−N . 3/23/1 // −=→== NaNNmFa . 

As a result from Newton second law, time will be proportional to 3/1N  that is 

attas /12/2 ∝→≈ therefore 3/13/2/1 NtNt ∝⇒∝ −  which agrees with our results 

for the scaling of relaxation time with droplet size on smooth surfaces, considering 

computational error.  

 

 

Figure 4.6.  Scaling with the system size for smooth surfaces. Y-axis is relaxation time from R(t) 

and x-axis is number of water molecules in the droplet both in logarithmic scale. Error bars are 

within the symbol sizes. 

 

For molecularly smooth surfaces, the initial relaxation rates reveal insignificant contact 

angle hysteresis. This means that response rates upon imposition and cessation of 

hydrophilicity are very similar. The scaling results suggest linear behaviour on log-log 

plot (Figure 4.6). 

For corrugated surface however, this is not the case. During drop relaxation 

following the transition from hydrophobic to hydrophilic (forward process) the drop has 

to overcome high friction because of strong pinning on the posts. The posts and surface 
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are both hydrophilic and because of the presence of the posts and droplet’s pinning to 

them there is a higher barrier to pass; therefore it will take longer for the droplet to relax 

to a new equilibrium state. However, for relaxation following the transition from 

hydrophilic to hydrophobic (reverse process) the situation is quite different. Here, the 

surface and posts are hydrophobic helping water to recede from the wells between the 

corrugations, as it approaches the new equilibrium state. In fact the posts do not pin the 

drop significantly in this case. The friction is therefore much weaker and it takes less time 

for the droplet to relax. Table 4.3 shows the results of time scales on corrugated surface. 

In the case of corrugated surfaces, when switching from hydrophilic to hydrophobic state, 

the transition is more or less exponential, however, when switching from hydrophobic to 

hydrophilic state, the relaxation is non exponential because of pinning as explained 

above. Therefore, advancing and receding processes have different frictions: the high 

friction regime corresponds to forward process (switching from hydrophobic to 

hydrophilic), because the relaxation process takes place on the surface which is already 

hydrophilic, with strong pinning to the posts, and low friction regime corresponds to the 

reverse process (switching from hydrophilic to hydrophobic), i. e. posts do not pin or pin 

less. We can relate the friction to the combined effect of all barriers that the droplet 

should pass to reach the new equilibrium state. 

 

Table 4.3. Size dependence of relaxation times for corrugated surfaces. N is the number of water 
molecules in the droplet. All numbers with standard deviation are relaxation times in ps. 

 
N/corrugated Forward τR(t) / ps Reverse τR(t) / ps 

1000 111 ± 13 60 ± 5 
2000 150 ± 14 64 ± 3 
4000 165 ± 5 68 ± 4 

 
The slope of scaling results for corrugated surface (Figure 4.7) is 0.58±0.1 for forward 

process (switching from hydrophobic to hydrophilic) and 0.28±0.05 for reverse process 

(switching from hydrophilic to hydrophobic). These results suggest that for corrugated 

surfaces time scales are different for the two different processes, with scaling exponent in 

the range 1/2 – 2/3 for advancing, and 1/4 – 1/3 for retraction.  The underlying physical 

relations behind these exponent values remain to be explained. 
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Figure 4.7.  Scaling with the system size for corrugated surfaces. Y-axis is relaxation time 

calculated using R(t) and X-axis is number of water molecules in the droplet both in logarithmic 

scale. 

 
Interfacial hydrogen bonds. Geometric definition has been used to calculate hydrogen 

bonds. One of the waters participating in the bond must be within COσ (3.19 Å) of one of 

the surface (carbon-like) atoms for calculation of interfacial bonds. We used equilibrated 

systems considering snapshots from 1 to 5ns trajectories obtained by simulation to 

calculate the number of interfacial hydrogen bonds in solid-liquid interface for smooth 

and corrugated surfaces. Table 4.4 contains the results of hydrogen bonds calculation of 

bulk and solid-liquid interface for smooth and corrugated surfaces. 

 

Table 4.4. Number of hydrogen bonds calculated for smooth and corrugated surfaces for bulk and 
liquid-solid (l-s) interfaces.  

 
 

 
 

N = 2000 H2O Smooth surface Corrugated surface 
Hydrophilic 2.49   l-s   (5 Å) 3.03   l-s   (15 Å) 

3.35   bulk 3.31   bulk 
hydrophobic 2.15   l-s 1.88   l-s 

3.49   bulk 3.37   bulk 
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Contact angle calculation. Contact angle of water droplet with 2000 water molecules on 

hydrophilic corrugated surfaces has been calculated using the method described in 

chapter 2. We measured contact angles for three different reference levels (which are the 

bottom layer, 3.19 Å, middle layer, 6.54 Å, and top layer of structured surfaces, 9.89 Å). 

We calculate contact angles on these hydrophilic corrugated surfaces and we found that 

the angle changed from ~29° on smooth surface to ~79° on our corrugated surfaces. That 

means corrugation will increase the contact angle and the change depends on the height 

and density of the posts on the surface. Our results show that for this special structured 

(corrugated) surface with coverage 1/16, contact angle has been increased by ~50 

degrees. Table 4.5 contains the results from contact angle measurements and Figure 4.8 

shows a typical drop profile and spherical fitting to that for contact angle measurement. 

 
 

Table 4.5. Contact angle calculated for droplet on a corrugated surface with three reference levels 
(bottom layer, middle layer, and top layer of structured surfaces). 

 
 

Reference level 0+3.19 = 3.19 Å 3.348+3.19 = 6.538 Å 6.696+3.19 = 9.886 Å 
o

Cθ  92 ± 3 85 ± 3 79 ± 3 
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Figure 4.8. Typical drop profiles for 2000 water molecule on a corrugated surface, for the 

hydrophilic case. Blue solid line is fitted to the simulated data. Dashed line represents the surface, 

where the contact angles were measured. R (x-axis) is the distance from the main axis of the drop 

and height (y-axis) is the height of the droplet. 

 
We did not take into account the points of the equimolar surface below the height of 10 Å 

(the height of the upper layer of atoms in structured surfaces) to avoid the influence from 

density fluctuations at the liquid-solid interface. Contact angle is the angle between the 

substrate surface and the circular best fit of the drop’s profile along the equimolar 

dividing surface, measured at the carbon-oxygen equilibrium distance of 3.19 Å for 

droplets on smooth surfaces (the same convention was used in studies of chemical 

heterogeneity: Master thesis by John Ritchie VCU 201058). In the case of structured 

surfaces (also topological heterogeneity, chapter 3), however, the contact angle was 

measured at the height of 9.89 Å corresponding to the height of the pillars. 
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Influence of Nanoroughness on the Contact line motion. Roughness influences the 

wetting properties of solid surfaces. The dependence of wetting behavior on roughness is 

of great relevance in many practical applications. Topological features, both on the 

nanometer and micrometer scales affect the equilibrium wettability of a substrate, as well 

as the static contact angle hysteresis and pinning forces acting on the three phase contact 

line. For both smooth and nanorough surfaces, contact line motion is governed by two 

distinct regimes: one based on hydrodynamic dissipation which dominates at small water 

contact angles, and the other can be described well by the molecular kinetic theory and 

describes contact line motion at large contact angles69.  

 

Background. Macroscopic Predictions. When a liquid droplet touches a solid surface it 

will spread spontaneously to achieve the equilibrium contact angle, i.e. the state of 

minimum free energy. The surface tension force70, γSV - γSL - γLV cos θ (θ is the dynamic 

contact angle that was introduced in chapter 1), and which drives the contact line while 

friction resists the spreading of the liquid, Figure 4.9. Resistance can be due to viscous 

friction in the bulk liquid and/or molecular friction at the contact line. Previous 

works73,74,71 identified two different dissipation regimes on a macroscopic scale: viscous 

dissipation within the bulk liquid (hydrodynamic models) and molecular dissipation near 

the three-phase contact line (molecular-kinetic theory, MKT). Hydrodynamic dissipation 

dominates for small water contact angles, while the molecular kinetic theory describes 

the contact line motion at large contact angles. The hydrodynamic description assumes 

viscous shear within the liquid wedge to be the predominant dissipation mechanism 

during the contact line motion. On the other hand, nonhydrodynamic friction at the 

contact line is considered in the molecular kinetic theory. Based on Eyring’s activation 

rate theory, local displacements occur at the contact line due to the thermal energyTkB , 

where kB is the Boltzmann constant, and T is the absolute temperature. Both kinds of 

dissipation can exist simultaneously or one can dominate72.  
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Figure 4.9. Schematic of force balance for equilibrium contact angle on smooth, chemically 

homogeneous surface. 

 

 

A relationship between the contact line velocity (V) and dynamic contact angle 

(instantaneous), θ, is given by Cox73 
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where the plus sign holds for advancing liquid fronts and the minus sign for receding 

ones. 0θ  is the static (equilibrium) contact angle, γLV denotes the liquid–vapor surface 

tension, L characterizes a typical macroscopic length scale (e.g., the droplet size), and LS 

denotes a microscopic slip length, which is expected to be of the order of the molecular 

size. In this model, viscous friction dominates and the viscous force FV is given by 
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where µ = 3η ln(L/LS)/θ is the friction coefficient in the bulk. For a liquid–vapor system, 

if θ < 150°, then g(θ) ≈ θ3/9 (with a 1% accuracy) and the Voinov equation is obtained74 
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The free parameters in equation (4-6) are the static contact angle, θ0, and the logarithmic 

ratio of the two relevant length scales, ln(L/LS). 

In the molecular-kinetic theory, MKT, thermally activated liquid displacements 

control the contact line motion and the energy dissipation is dominated by non-

hydrodynamic effects. According to this model, the contact line moves through 
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individual molecular jumps, with an equilibrium frequency k0 and a displacement 

distance λ. The relation between dynamic contact angle and velocity is given by 
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If the argument of sinh is small, equation (4-7) reduces to  

( )θθγλ
coscos 0

3
0 −= LV
BTk

k
V         (4-8) 

Equation (4-8) can be rewritten as FW = ζV, where FW is the driving force and  

ζ = kBT/k0λ
3 is the friction coefficient at the contact line. It has the physical dimension of 

a shear viscosity, determines the dissipation rate within the three phase contact line and 

can be compared with the bulk viscosity of the liquid.  

For contact angles approaching 180° the argument of sinh will typically be greater 

than one, so equation (4-7) will reduce to a single exponential form. The maximum 

wetting speed will be75 
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k0 can be related to the bulk liquid viscosity η and the activation free energy of wetting 

per molecule arising from solid–liquid interactions, ∆GS* , as 
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where vL is the unit volume and h is Planck’s constant. The frequency k0 is influenced by 

both the interactions at the surface and the viscous interactions with neighboring 

molecules, whereas kS is considered to be affected only by surface forces. vL is 

anticipated to correspond to the molecular volume for simple liquids. If the specific 

activation free energy of wetting per unit area ∆gS* = ∆GS*/ λ
2 is taken to be equal to the 

work of adhesion (Wa) between the liquid and the solid, 
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The last equation predicts that contact-line friction increases linearly with liquid viscosity 

but exponentially with work of adhesion. Experimental study of dynamic wetting on 

surfaces of widely varying wettability with a single liquid provides strong evidence in 

support of this equation17.  

Energy dissipation can of course occur both in the bulk and near the moving three-phase 

contact line. Petrov and Petrov76 proposed a combined molecular-hydrodynamic 

approach, assuming that both the viscous friction in the intermediate region of the 

meniscus and the nonhydrodynamic friction in the vicinity of the three-phase contact line 

play a role in determining the dynamic contact angle. In order to accommodate both 

kinds of dissipation, Brochard-Wyart and de Gennes divided the total energy dissipation 

(P) into a hydrodynamic term (PHD) and a molecular-kinetic term (PMK): 

( ) ( ) 2VVFFPPP WVMKHD ςµ +=+=+=       (4-12) 

The friction coefficients for the hydrodynamic (µ) and molecular (ζ) terms can be 

obtained from the experimental data of dynamics contact angle as a function of perimeter 

velocity72.  

 

Nanoscale Dynamics. Using our simulation results of 2000 water molecule drop we 

calculate dynamic contact angle and velocity of drop perimeter’s radius and we obtain 

dynamics contact angle (θ) versus velocity of drop perimeter (Figure 4.10), cos(θ) versus 

velocity of drop perimeter (Figure 4.11), and θ3 versus velocity of drop perimeter  

(Figure 4.12).  To get these values first we need to calculate velocity of the drop 

perimeter, drd /dt, that can be calculated in two steps with partial derivatives 

dt

dh

dh

dr

dt

dr com

com

dd .=          (4-13) 

To get 
com

d

dh

dr
 and dynamic contact angle, θ, we wrote a program (Appendix III) using 

equations (3-5) and (3-6), which considers a hemi-spherical drop. 
dt

dhcom can be obtained 

directly from simulation results. By multiplying these two values at similar hcom (height 

of the center of mass), we can estimate the velocity of the drop perimeter. Based on 
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comparisons in Figure 3.6, the accuracy of the droplet contact angle and perimeter radius, 

calculated from the height of the center of mass will be better at higher contact angles. 

 We calculate the static contact angle of the drop on hydrophilic surface in Wenzel 

state (Table 4.5), as explained in chapter 2. However, the static contact angle of the drop 

on a hydrophobic surface and intermediate states in Cassie state could not be determined 

accurately because of droplet bouncing on the surface due to its thermal motion. Instead, 

dynamic contact angles were estimated from the height of the drop’s center of mass 

(Appendix III). The procedure also requires precise knowledge of the height of the 

droplet bottom plane. This plane is easily determined for the Cassie state where it 

coincides with the pillar height, but cannot be defined precisely for the Wenzel state and 

intermediate Cassie-to-Wenzel states, when water droplet is entering between the pillars. 

The final contact angle estimated from the center of mass (Figure 4.10) is about 40°, well 

below the equilibrium value of 79° (Table 4.5). Given the drop geometry is known 

accurately only at high contact angles, we use only the initial portion of our data  

(Figures 4.10-4.12), corresponding to high contact angle, for our calculations.  

We considered simulation results of 2000 water droplet on a corrugated surface 

initially equilibrated in the Cassie, as it relaxes to the Wenzel state. Using our data along 

with hydrodynamics theory (equation 4-6) and MKT (equation 4-7) we obtain fitting 

parameters Ln(L/Ls), k0 and λ and corresponding friction coefficients: ζ, the friction 

coefficient at the contact line, and µ, the friction coefficient in the bulk, following the 

methods presented by Ralston72. To do so we need surface tension and viscosity for 

SPC/E water at 300K. These values have been calculated77,78 at 63.6 ± 1.5 mJ/m2 and 

0.82 ± 0.09 mPa s. Experimental values are respectively 71.6 mJ/m2 and 0.85 mPa s.  

We use the equilibrium value of 79°, however, at high initial dynamic contact 

angles, the difference θ3-θ0
3 is not very sensitive to θ0 and even the use of the 

approximate final contact angle, θ0, from the center-of-mass calculation gives very 

similar results. 

Using equation (4-6), hydrodynamic theory, with drop geometry data calculated 

from the initial time evolution of the position of center of mass, and SPC/E values for 

surface tension and viscosity we estimate the “bulk” friction coefficient,  

μ ~ 0.002 (1 ± 25%) kg/sm. We obtain very similar value (0.0025 kg/sm) using  
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equation 4-7, MKT theory, for “contact line” friction coefficient, ζ. This seems to be 

understandable in the case of nanoscale drop where it is difficult to define a clear 

boundary between hydrodynamics and MKT, and there is likely an overlap between the 

two regimes.  

Based on our results slip length Ls varies around 1/6 drop size L in the more 

reliable large contact angle part of the plots (Figure 4.13) and k0 and λ are  

0.94×1010 /s, and 5.6 Å. 

Our results for a nanosized water drop (Figures 4.9 - 4.11) agree qualitatively 

with results of J. Ralston72 for a macroscopic ionic drop (See Appendix IV). However, 

the microscopic drop has much higher velocity of perimeter’s radius, about two orders of 

magnitude difference, due to weaker friction. This indicates that our microscopic 

roughnesses are much smaller than the roughness on a macroscopically smooth surface 

used in their experiment.  

The product of k0 and λ2 gives an estimate of the diffusion coefficient, using 

fitting parameters above it gives 2.95×10-9 m2/s.  

 

 

Figure 4.10. Dynamic contact angle (θ) versus velocity of the drop perimeter that has been 

calculated from the height of the center of mass (Appendix III). 
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Figure 4.11. Cosine of dynamic contact angle, cos(θ), versus velocity of the drop perimeter. 

Inset is cos(θ), versus velocity of the drop perimeter in logarithmic scale.  

 

 
Figure 4.12. Dynamic contact angle cubed, θ3, versus velocity of the drop perimeter.  
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Figure 4.13. Nanodroplet friction coefficient µ (Eq. 4.6) on corrugated substrate, shown as a 
function of perimeter velocity V at early stages of droplet relaxation following a change from 
hydrophobic to hydrophilic character of the surface. The red line relies on the direct measurement 
of the equilibrium contact angle (79°). The blue line utilizes the estimate from the drop's 
equilibrium position of the center of mass. Note the center of mass data, including the final value, 
become increasingly inaccurate as the drop enters the Wenzel regime (left portion of the graph). 
 
 

Discussion. Monitoring the height of the center of mass of the droplet gives a good 

representation of the relaxation process. Figures. 4.4a-4.4b show changing of the height 

of the center of mass versus time during the equilibration process for smooth and 

structured (corrugated) surface for the case of 2000 water droplet. Results for smooth 

surface show symmetry for evolution of height of the center of mass between hydrophilic 

and hydrophobic systems, however, results for structured (corrugated) surface show 

asymmetry. Based on the evolution of the height of the center of mass we calculate time 

correlation functions C(t) and R(t) from equations (4-1) and (4-2). Figures 4.5a-4.5b 

shows R(t) for smooth and structured (corrugated) surface, all for the case of 2000 water 

droplet. Following the symmetry of evolution of the height of the center of mass for 

water droplet on smooth surface, we see similar relaxation in both, R(t) and C(t). These 

graphs on a semi-logarithmic scale are almost linear indicating an exponential decay. At 

the very beginning of the process, at least up to 20 ps, there is complete overlap between 
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time correlation functions of forward and backward processes. That means that in the 

case of smooth surfaces studied here, contact angle hysteresis is negligible. In the case of 

corrugated surfaces, the asymmetry of evolution of the height of the center of mass for 

two systems is manifested by different behaviors of time correlation functions. This  

dis-similarity is more obvious in semi-logarithmic scale. It shows that the backward 

process (going from hydrophilic to hydrophobic) is faster and is completed much sooner 

than the forward process. These observations can be explained by pinning/depinning 

mechanisms. When the droplet is equilibrated on a hydrophobic surface and suddenly 

feels hydrophilic interaction (by switching the surface) it will undergo spreading that 

involves many pinning/depinning events between individual water molecules and posts 

until it reaches the equilibrium shape. However in the case of reverse process, when the 

droplet is equilibrated on a hydrophilic surface, suddenly reversed to hydrophobic 

interaction (by another switching), contraction involves only depinning between water 

molecules and posts and therefore proceeds much faster.  

Figure (4.14) indicates the occurrence of pinning (i.e. forming a water/substrate 

bond in the wells) as follows: the drop is confined between pillars and acquires a squarer 

shape due to pinning to the edge pillars. It seems that the ratio of number of times that 

pinning is taking place to the number of times that depinning is taking place can be an 

indication of how far or close the droplet is to the equilibration. That means before 

equilibration the number of times that pinning and deppining are taking place are almost 

the same but when the drop reach to the equilibrium state and perimeter velocity is going 

toward zero, the number of pinning events is much higher than the number of depinning 

events. 
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Figure 4.14. Top view of water droplet after 500 ps equilibration time on a corrugated surface. 

Because of pinning, the drop perimeter looks more like a square than a circle. 

 

Conclusion. There are several conclusions we can get from these observations79. First the 

results clearly show contact angle hysteresis for corrugated surface on a nanoscale 

between forward and backward processes, which was known only for macroscopic 

systems before. Second, our studies show the result for scaling of the relaxation time 

with the system size. For a smooth surface, we found that the relaxation time versus 

number of molecules, in a logarithmic scale, gives a linear plot for forward and reverse 

processes with similar slopes. However for corrugated surface we obtained linear fitting 

for relaxation time versus number of molecules, in a logarithmic scale too, but with 

different slopes for forward and reverse processes. This difference is an indication of 

negligible hysteresis and friction for smooth surface, but considerable hysteresis and 

therefore friction for the case of corrugated surface.  

Third, our study is showing there is a friction force in the case of structured 

surfaces studied here that is applying in different ways in the case of forward and 

backward processes due to the energy dissipation processes. We calculate the friction 

coefficient of the 2000 water droplet on a corrugated surface for the case of hydrophilic 

interaction, droplet going from Cassie to Wenzel state, using hydrodynamic and 

molecular kinetic theory. Another interesting finding of our calculations for friction 

coefficient shows that hydrodynamic and molecular kinetic theory can describe our data 

for this relaxation process very well giving very similar values for friction coefficients at 

nanoscale. Therefore we conclude that because of nanoscopic scale the boundary between 
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hydrodynamic and molecular kinetic regimes is not as well defined as it is in the 

macroscopic world. 

Our results also show that although the perimeter of water droplet is a circle in the 

case of smooth surface, it depends on the pattern of the structured surface it can be far 

from a circle because of pinning effects for hydrophilic interactions. 

 

 

Future task that need to be completed:  

Use molecular dynamics simulation to compute molecular diffusion within posts and 

compare its value to diffusion in the nanodrop. While inspecting the trajectories via VMD 

(Visual Molecular Dynamics, molecular graphics software) we can visually inspect that 

they differ. 
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Chapter 5. Water Dynamics inside Nanospheres 
 
 

It is well realised that water in the confined geometry exhibits modified behaviour 

in both structural and dynamic properties. Nano-spheres are very well defined confined 

structures that are ideal for studying the properties of confined liquids as opposed to other 

disordered porous material that are also used by experimentalists80,81.  

 

Simulation Systems. In silico samples. Experimental and simulation works82,38 show 

that physical properties of water in spherical nano-confinements can be described using 

buckyball cage geometry (except for the layer directly in contact with the wall). 

Therefore as a first approximation for nano-sphere confinements, we have used spherical 

cages of "hollow buckyballs" of four different sizes (sphere radius: 8.37 Å, 10.45 Å, 

12.52 Å and 17.52 Å that correspond to C320, C500, C720 and C1500 buckyballs).  

 

Confined Water. To access the correct number of water molecules inside Cx, hollow 

buckyballs, GCMC (Grand Canonical Monte Carlo) method needs to be performed. 

Instead we adjusted the number of water molecules inside a buckyball based on available 

free volume and using 30 Å3 an approximate volume of one water molecule. For the 

volume of a hollow buckyball we considered the effective volume by subtracting the 

sigma value (Lennard-Jones distance parameter, σ=3.19 Å) of “carbon” atoms because 

water molecules cannot get closer to the wall than σ/2 value and we approximate all these 

cages as a sphere. Using these assumptions we calculate number of water molecules in 

each of these samples (i.e. 20 water molecules in C320, 57 water molecules in C500, 100 

water molecules in C720 and 500 water molecules in C1500). 

We examined effects of different interactions between water and interior wall 

resembling hydrophilic/hydrophobic scenarios. The strength of water-wall interaction 

resembles that of hydrocarbon (hydrophobic), or that of glass (hydrophilic). Lennard-

Jones parameters for wall-oxygen, to make these different interactions, are presented in 

(Table 5.1):  
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Table 5.1. Lennard-Jones parameters used in the simulations. 
 

 σ (W-O)  [kJ/mol] ε (W-O)  [kJ/mol] 

Hydrophobic 3.19 Å 0.18810 

Hydrophilic 3.19 Å 0.62700 

 

this σ value of carbons means for example for a cage with 8.37 Å radius only ~5.2 Å is 

available to water molecules, for a cage with 10.45 Å radius only ~7.3 Å is available and 

for a cage with 12.52 Å radius only ~9.3 Å is available for water molecules and so on. 

Figures (5.1a-5.1b, 5.2a-5.2b, 5.3a-5.3b and 5.4a-5.4b) show snapshots for these two 

different (hydrophilic/hydrophobic) systems for each system size.  

   
 

                                  
Figure 5.1a. Snapshot for hydrophilic                  Figure 5.1b.  Snapshot for hydrophobic 

C320 sample.                                                     C320 sample. 
 
 

                        
Figure 5.2a. Snapshot of hydrophilic,             Figure 5.2b.  Snapshot of hydrophobic, 

C500, sample.                                                            C500, sample. 
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Figure 5.3a. Snapshot of hydrophilic,           Figure 5.3b.  Snapshot of hydrophobic, 

     C720, sample.                                                      C720, sample. 
 
 

                              
Figure 5.4a. Snapshot of hydrophilic,               Figure 5.4b.  Snapshot of hydrophobic, 

C1500, sample.                                                             C1500, sample. 
 

 
Simulation Details. We used DLPOLY46 code (version 2.15) to do classical molecular 

dynamic simulations in the NVT ensemble, using a Nose-Hoover thermostat83 to 

maintain a temperature of 300 K. Verlet integrator was used with time step 0.5 fs for all 

simulations. We have made 10 different systems for each case and total simulation time 

in most of them (except C1500) is about 65 ns. The Lennard-Jones cut-off values has 

been chosen to be 19, 25, 28 and 36 Å for C320, C500, C720 and C1500 respectively 

which are a little bigger than the hollow buckyball’s size. The hydrogen bond calculation 

is based on geometry criteria that is mentioned in chapter 2. Correlation functions have 

been calculated for up to 1.2 ns to get sufficient statistics. In these systems there is not 

need to apply periodic boundary conditions. Therefore the system contains only one 

simulation box that is occupied by an almost spherical confinement with confined water 

molecules inside and vacuum outside. The volume of the simulation box is equal to 
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69×69×69 Å3. The technique we used for dealing with long ranged electrostatic 

potentials is direct Coulomb sum for accurate simulation of isolated (nonperiodic) 

systems. Both water and confinement have been modelled as rigid molecules. We also 

performed simulation in NVE ensembles to get the correct dynamics starting from 

equilibrated configuration. Extra subroutines were added to carry out hydrogen bond 

dynamics calculations (Appendix V: some subroutines that are adopted from Christopher 

Daub and modified by us to be applicable for our confined systems). 

 

Correlation Functions. Hydrogen bond correlation function c(t), have been calculated 

using84,85  

 

h

thh
tc

)()0(
)( =                                                            (5-1) 

   

where dynamical variable h(t) equals unity, if the particular tagged pair of molecules is 

hydrogen bonded, and is zero otherwise. Figures 5.5a, 5.6a, 5.7a and 5.8a, shows c(t) for 

both hydrophobic/hydrophilic systems with different sizes. The rate of relaxation to 

equilibrium is characterized by the reactive flux hydrogen bond correlation function84,85 

k(t), (Figures 5.5b , 5.5c , 5.5d ; 5.6b , 5.6c , 5.6d ; 5.7b , 5.7c , 5.7d; 5.8b , 5.8c , 5.8d).  
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Overdots denote the time derivatives. 
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Figure 5.5. C320 samples, hydrophilic (blue) and hydrophobic (red), with 20 water molecules 
inside. a) Hydrogen bond correlation function, C(t). b) reactive flux hydrogen bond correlation 
function, k(t) in logarithmic scale. c) k(t) up to 50 ps. d) k(t) up to 0.2 ps, transient time is  
~ 0.2 ps. 
 
 
 
 
 
 
          
 
 

a) b) 

c) d) 
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Figure 5.6. C500 samples, hydrophilic (blue) and hydrophobic (red), with 57 water molecules 
inside. a) Hydrogen bond correlation function, C(t). b) reactive flux hydrogen bond correlation 
function, k(t) in logarithmic scale. c) k(t) up to 50 ps. d) k(t) up to 0.2 ps, transient time is  
~ 0.2 ps. 
 
 
 
 
 
 
 
 

a) b) 

c) d) 
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Figure 5.7. C720 samples, hydrophilic (blue) and hydrophobic (red), with 100 water molecules 
inside. a) Hydrogen bond correlation function, C(t). b) reactive flux hydrogen bond correlation 
function, k(t) in logarithmic scale. c) k(t) up to 50 ps. d) k(t) up to 0.2 ps, transient time is  
~ 0.2 ps. 
  

 

 

 

a) b) 

 c) d) 
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Figure 5.8.  C1500 samples, hydrophilic (blue) and hydrophobic (red), and charged sample 
(green), with 500 water molecules inside. a) hydrogen bond correlation function, C(t). b) reactive 
flux hydrogen bond correlation function, k(t) in logarithmic scale. c) k(t) up to 50 ps. d) k(t) up to  
0.2 ps, transient time is ~ 0.2 ps. 
 

 

 

 

a) b) 

d) c) 
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In Table 5.2 we have reported k(t) at starting time which is kTST, transition state theory 

rate constant. This value depends on hydrogen bond definition85. Another value that has 

been reported in Table 5.2 is initial value of velocity autocorrelation function which is 

equal to 3kBT/m in which m is molecular mass.  

 

Table 5.2. Initial values of k(t) and VACF (velocity auto correlation functions) for hydrophilic 

and hydrophobic samples in different. NVT ensemble was used for C320, C500 and C720 but 

NVE ensemble used for C1500. 

 C320 C500 C720 C1500 

kt=0 (Hphil) / ps-1 3.07 3.67 3.98 3.57 

kt=0 (Hphob) / ps-1 3.35 3.68 3.69 3.67 

VACFHphil
t=0 (Å2/ps2) 269.15 275.00 279.40 267.83 

VACFHphob
t=0 (Å2/ps2) 260.25 273.88 249.34 277.42 

 

Function n(t) represents a measure of local strain in the hydrogen bond network  

(Figures  5.9a-5.9b ; 5.10a-5.10b ; 5.11a-5.11b; 5.12a-5.12b). 

 ∫ ′′=
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which is the restrictive reactive flux function. 
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For bulk water, C

OOR  is a cut-off value equal to 3.5 Å, in which )(tROO is the distance 

between the oxygen atoms of a tagged pair85. This value has been estimated from radial 

distribution function of bulk water. For our simulation this value is adapted from bulk 

value which is an approximation for our confinements. 
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Figure 5.9. C320 sample, hydrophilic (blue) and hydrophobic (red), with 20 water molecules 
inside. a) function representing local strain in the hydrogen bond network, n(t), b) restrictive 
reactive flux function, kin(t). 
 
 
 
 
 
 

a) 

b) 
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Figure 5.10. C500 sample, hydrophilic (blue) and hydrophobic (red),  with 57 water molecules 
inside. a) function representing local strain in the hydrogen bond network, n(t), b) restrictive 
reactive flux function, kin(t). 
 

 

b) 

a) 
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Figure 5.11. C720 sample, hydrophilic (blue) and hydrophobic (red), with 100 water molecules 
inside. a) function representing local strain in the hydrogen bond network, n(t), b) restrictive 
reactive flux function, kin(t). 
 
 
 
 
 
 

a) 

b) 
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Figure 5.12. C1500 sample, hydrophilic (blue) and hydrophobic (red), and charged sample 
(green),   with 500 water molecules inside. a) function representing local strain in the hydrogen 
bond network, n(t), b) restrictive reactive flux function, kin(t). 
 

b) 

a) 
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Considering A � B, the reaction kinetics for t > ttransient is described by  

(Figures 5.13a-5.13b ; 5.14a-5.14b ; 5.15a-5.15b; 5.16a-5.16b): 

 
)()()( tnktcktk ′−=                                                            (5-5) 

By transient time, we mean librations and inter-oxygen vibrations on a short time scale. 

From Figures. 5.5d, 5.6d, 5.7d and 5.8d it is clear that transient time is ~ 0.2 ps which is 

not different from bulk water’s transient time.  

If one can find a unique values for k and k’ that can satisfy equation (5-5), that means the 

model is working and we have a first order kinetic. To find the best values for k and k’ 

we have two choices. Either we can use a fitting procedure or we can do try and error 

procedure to find correct values. We used the combination of both methods to find the 

best k and k’ in each system. 
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Figure 5.13. Correlation plot for C320 sample, with 20 water molecules inside. a) Hydrophilic, 
deviation is starting at 6.4 ps. b) Hydrophobic deviation is starting at 5.8 ps. 
 

b) 

a) 
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Figure 5.14. Correlation plot for C500 sample, with 57 water molecules inside. a) Hydrophilic, 
deviation is starting at 2.45 ps. b) Hydrophobic deviation is starting at 3.0 ps. 

 

a) 

b) 
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Figure 5.15. Correlation plot for C720 sample, with 100 water molecules inside. a) Hydrophilic, 
deviation is starting at 2.8 ps. b) Hydrophobic, deviation is starting at 2.7 ps. 
 
 
 

a) 

b) 
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Results and discussion. Initial calculations have been done in NVT ensemble  

(Table 5.3). From these correlation plots, we obtain very similar rate constant 

characterizing water hydrogen bond dynamics in hydrophilic and hydrophobic systems. 

Note that τHB, hydrogen bonds life time, is equal to 1/k and time for reforming a bond is 

1/k’85.  

 
Table 5.3. Summary of the results of MD simulation in NVT ensemble. 

 

NVT k (1/ps) k’(1/ps) τHB (ps) 

C320 
20 water 

hydrophilic 0.18 0.93 5.7 
hydrophobic 0.23 0.99 4.4 

C500 
57 water 

hydrophilic 0.30 1.22 3.3 
hydrophobic 0.31 1.12 3.2 

C720 
100 water 

hydrophilic 0.29 1.03 3.4 
hydrophobic 0.34 1.20 3.0 

C1500 
500 water 

hydrophilic 0.30 - 3.3 
hydrophobic 0.37 - 2.7 

 
Up to now the difference between hydrophilic and hydrophobic samples is only 

based on different Lennard-Jones energy parameters, ε. To make this difference even 

more pronounced we also made a charged confinement by having partial charges 

distributing over all atoms using the method presented in the work of86 Berkowitz.  These 

charges formed dipoles with dipolar density ~1dipole/50Å2, which is close to the dipolar 

density in some of the zwitterionic model biomembranes (Table 5.5). The whole sample 

however, is neutral.  

In our Cx samples (x=320, 500, 720, 1500), we calculate the amount of partial 

charge that must add to individual molecules. We have even number of carbon-like atoms 

in each case therefore we have half of them to get positive charge and the other half to get 

negative charge. This makes the overall structure to be neutral. Table 5.4 has the value of 

partial charges in each case that are evenly distributed over all carbon-like atoms. 

 

Table 5.4. Partial charge values on different confinements. 

Sample C320 C500 C720 C1500 

Partial charges ± 0.0875 ± 0.088 ± 0.089 ± 0.0888 
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These charged nano-spheres are interesting to study because the results of their 

study can be compared with well known Molybdenum based nanocapsules that are based 

on very robust structure of [Pentagon]12(Linker)30 and can be modified in different ways. 

In these structures each pentagonal unit is containing six Mo-atoms. Using different 

functional groups (i.e. PHOS and ACET) for internal layer of these nanocapsules, 

experimentalists made respectively hydrophilic and hydrophobic spherical 

confinements87,88. Water trapping during the synthesis of these compounds made it 

possible to study water dynamics in well ordered, spherical, confinements. For example, 

this is structural formula for these nanocpsules:  

[(NH2)3C]32(H2O)100{(NH 2)3C}20{(Mo)Mo 5O21(H2O)6} 12{Mo 2O4(SO4)} 10{Mo 2O4(H2PO2)} 20] 

 

Also we calculate diffusion coefficients by integration of velocity autocorrelation 

functions, VACF, (Figures 5.17a,b-5.18a,b-5.19a,b-5.20a,b). Also we calculate mean 

square displacement, MSD. As it is clear from the results, especially Figure 5.19b, there 

is a ballistic motion followed by almost linear motion of water molecules, but because of 

confinement as it is clear from Figures 5.17b and 5.18b, MSD reaches to an almost 

constant value. 

 

As another dynamics property we calculate rotational relaxation times using 

second Legendre polynomial, P2(t), (Figures 5.21a,b,c,d). We switch ensemble to NVE 

that is more reliable for studying the dynamics of systems from simulations starting from 

well equilibrated configurations. However, there is a small difference between the results 

of calculation in NVT and NVE ensemble. For example for neutral hydrophilic C320 

sample with NVT we got 0.7 ps and with NVE we got 0.8 ps for rotational relaxation 

time.  Table 5.5 has the results of dynamics properties calculated in NVE ensemble for 

hydrogen bond life times, diffusion coefficients and rotational relaxation time. For 

comparison purpose Table 5.6 shows the simulation results of bulk SPC/E water from 

literatures.  
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Figure 5.17. C320 sample with 20 water molecules (blue) hydrophilic and (red) hydrophobic. a) 

Velocity auto-correlation function, b) Mean square displacement. Inset shows MSD up to 5 ps. 

 

 

a) 

b) 
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Figure 5.18. C500 sample with 57 water molecules (blue) hydrophilic and (red) hydrophobic. a) 

Velocity auto-correlation function, b) Mean square displacement. Inset shows MSD up to 10 ps. 

 

a) 

b) 
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Figure 5.19. C720 sample with 100 water molecules (blue) hydrophilic and (red) hydrophobic. a) 

Velocity auto-correlation function, b) Mean square displacement.  

 

a) 

b) 
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Figure 5.20. C1500 sample with 500 water molecules (blue) hydrophilic and (red) hydrophobic. 

a) Velocity auto-correlation function, b) Mean square displacement.  

 

 

 

 

 

 

 

a) 

b) 
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Figure 5.21. Second Legendre polynomial to calculate rotational relaxation times, (blue) 

hydrophilic and (red) hydrophobic and (green) charged samples. a)  C320 sample with 20 water 

molecules. b) C500 sample with 57 water molecules. c) C720 sample with 100 water molecules. 

d) C1500 sample with 500 water molecules. 

 

 

 

 

 

a) b) 

c) d) 
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Table 5.5. The results of MD simulation in NVE ensemble for hydrogen bonds dynamics (τHB), 

diffusion coefficients (D) and rotational relaxation times (τrotation) at 300K for hydrophobic and 

hydrophilic and charged samples. 

 

NVE τHB (ps) tReforming(ps) D×10-8 m2/s τrotation(ps) 

C320 

20 water 

Philic/charged 6.6 1.03 0.4 1.0 

Philic/neutral 6.4 0.94 0.44 0.8 

Hydrophobic 6.9 1.12  0.5 1.2 

 

C500 

57 water 

Philic/charged 6.2 1.37  0.2 1.4 

Philic/neutral 6.2 0.82  0.4 1.2 

Hydrophobic 6.5 0.89  0.6 2.0 

 

C720 

100 water 

Philic/charged 3.9 1.25 0.5 1.8 

Philic/neutral 3.7 1.01 1.0 1.5 

Hydrophobic 4.0 0.83  0.2 2.2 

 

C1500 

500 water 

Philic/charged 4.7 1.47 0.17 3.7 

Philic/neutral 3.8 1.17 0.18 2.7 

Hydrophobic 3.2 1.15 0.32 2.3 

 

Table 5.6. The results of MD simulation for SPC/E bulk water at T=300K. 

SPC/E τHB (ps) tReforming(ps) D×10-8  m2/s τRotation(ps) 

Bulk Water 1.785 1.185 0.2489,41 1.490,91 

 

From the results obtained for dynamics properties for different confinement sizes, it is 

clear that there is insignificant difference in water dynamics confined within these 

different samples. Considering system sizes and number of water molecules we can 

definitely say that this is not due to smallness of these samples. Therefore there is a 

distinct difference between hydration water outside the spheres (studied by Baglioni92) 

and water confined inside the spheres. We have a reasonable explanation of what is this 

difference due to. A water molecule outside of the sphere (which is a usual hydration 
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water), has a force and there is attraction between sphere and this molecule. In other 

words, net force on this water molecule is acting to attract it to the surface. However, a 

water molecule inside the sphere has a force pulling it towards all atoms of the sphere in 

all directions and so the net force is pretty much balanced out, i.e. it is weak. That means 

molecules inside these spheres are more free than molecules outside, because force from 

opposite directions will greatly balance (Figure 5.22). This is about radial (i.e. 

perpendicular) motion, but lateral motion will have wells and bumps, depending on 

surface roughness/heterogeneity. The interior surface can be very smooth or less smooth 

(as it can be seen from snapshots). If inside is very smooth it would be easy to move 

laterally but water may be less attracted to the surface because it is affected by the other 

side of the surface. That means that we should expect a difference between lateral and 

radial motions/diffusion for a water cluster inside confined spheres that calls for 

calculating separately D∥ and D⊥ which is left for future work.     

 
 
 
 

 
 

Figure 5.22. Water in the confinement feels attraction and repulsion from all cage’s atoms in all 
different directions. 

 
 

Our results in Table 5.5 show that we got diffusion coefficients (which in our case 

are overall diffusion constants) that in some cases are bigger than the bulk value, 

especially for smaller confinements. Berne and co-workers93 have calculated lateral and 

radial diffusion for a system of rectangular confinement with a flat interface that 

Dzz≠Dxx=Dyy and they found Dxx=Dyy=D∥≈0.8Å2/ps and for Dzz=D⊥≈0.5Å2/ps which 

means diffusion coefficient close to the interface is bigger than the one far from the 

interface (i.e. bulk water). For bulk water they compute the diffusion coefficients in slabs 

of water of width 3.5 Å perpendicular to the z-axis and they found Dxx = 0.30 ± 0.02 

Å2/ps and Dyy = 0.30 ± 0.02 Å2/ps and for homogeneous system using Einstein relation 

they found D = 0.307 Å2/ps. We have a possible explanation for our results based on 

Berne’s results. In these nanospheres water droplet is in nanoscale size and since nano-

size materials have high surface to volume ratio, therefore the most portion of water 
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molecules are located on the outer layer of the droplet (i.e. surface of the droplet) and 

therefore the most molecules are interfacial water molecules (i.e. they are near the 

interface either solid interface in the case of filled confinement or vapour-solid interface 

in the case of partially filled samples that discussed a little later). According to Berne’s 

results the diffusion coefficient of these interfacial water molecules is bigger than the 

bulk value and even though the diffusion coefficient for the molecules of inner layers is 

smaller than the bulk value, the overall value will be bigger than the bulk value. Near 

interface, the number of hydrogen-bonds decreases, compared to the bulk value, therefore 

fewer hydrogen-bonds reduce the effective friction felt by the water molecules, resulting 

in a larger diffusion coefficient. Of course in the case of spherical confinement this effect 

will enhance, since interfacial water molecules are the majority of total molecules. 

Therefore higher diffusion coefficient would be expected compare to rectangular 

confinement. In our case the geometry of these confinements makes it easier for 

molecules to move and continue to move. Rotational relaxation times in Table 5.5 also 

differ compared to the bulk water value that has been reported by experimentalists as94 

τrotatioanl=2.8ps. 

 
 In third column of Table 5.5 we have reported rotational relaxation times. As a 

first thought it might be confusing why reorientational times are faster than hydrogen 

bond life times. This argument is relevant for bulk water since water molecules need to 

break few hydrogen bonds in order to be able to rotate. In bulk water all water molecules 

are attached to others through hydrogen bonds. However in the case of confined water 

especially nanoscale confinement, question can be answered considering large number of 

interfacial water molecules that are not as bind as in bulk water because interfacial water 

molecules have dangling OH bonds (especially in partially filled, like our C720 sample, 

or hydrophobic confinements that interface is pronounced) but water molecules in the 

bulk do not have that. Therefore interfacial water molecules are more free to rotate and 

although rotation is a local process, actually faster diffusion that has been discussed 

before, might help them to rotate even faster. This property has been proved recently by 

experimentalists at AMOLF using femtosecond vibrational spectroscopy95. 
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 Another question might be raised about these confined nanodroplets is whether 

these water molecules stay in a cluster and therefore showing a collective motion or they 

don’t. As one knows cluster undergoes thermal motion and it is easier to see this in a 

partially filled pore than in a fully filled pore, but in both cases molecules move with 

exactly the same kinetic energy. In the filled one they have spatial constrains that prevent 

us to see this as clearly as in the partially filled case. Therefore in order to find the right 

answer to this question we made a partially filled sample on purpose which is C720 with 

100 water molecules, and then we calculate the distance between all pairs. We plot the 

average distance between a molecule and all other molecules over time. This was done 

for two molecules, molecule 1 and molecule 2 and then we plot the average distance 

versus number of frames that is an indication of time. It is clear from Figure 5.23 that the 

distance remains almost the same. Therefore we conclude that in the case of partial filled 

confinement (Figure 5.24), waters remaining the form of tight cluster to minimize 

interfacial free energy.  

 

 

Figure 5.23. Average distance between a water molecule and all other water molecules over time 

for partially filled sample C720 with 100 water molecules inside. X-axis is number of frames 

which are 40 and the total time is 100 fs. Tick red color shows the average of averaged distance 

for molecule1 and molecule2. 
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Figure 5.24. Snapshot of partial filled sample, charged C720 with 100 water molecules inside.  

 
Figure 5.24 is a snapshot of simulation box for charged C720 with 100 water molecules. 

As it was seen during the whole simulation water molecules stay together for the entire 

time, that is suggesting a cluster motion but because of its thermal motion this cluster is 

rolling around the wall.  

Comparing real nanocapsules87 with our system, we should notice of few Mo atoms that 

are distributed around the sphere. Therefore if we consider lateral motion of water close 

to wall, there must be some points close to Mo atoms that are slowing down water 

motion. As a result we expect an additional time scale related to this type of motion. We 

can mimic this behaviour by replacing partial charge distribution of all atoms with only 

two charges as a dipole (with the same density as before) or having a quadrupole instead.   

 

Conclusion. From our results we can conclude having hydrophilic or hydrophobic 

sample do not make any significant difference in dynamic properties. The reason is all 

forces applied to molecules inside these spherical confinements from different directions 

are balanced out that is an interesting and new finding. The only simulation study on 

similar systems39 considered only the hydrophilic sample therefore they were not able to 

distinguish this. We considered different sizes of the spherical confinement and we 

realized that in the case of smaller confinement, since the ratio of surface molecules to 

bulk molecules is high, the overall diffusion is greater than the bulk value. On the basis of 

the current data we have so far we may predict water confined in Cx based nanospheres 
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(x=320, 500, 720, 1500) can show up to three different time scales: first one is a small 

time scale related to hydrogen bonds dynamics, second is a time scale related to slowing 

down motion by charged atoms and third one is a time scale of collective motion when 

the whole droplet can stay as a cluster. To validate these prediction additional 

computations will need to be performed.   

 

Future tasks that need to be completed. Calculation of lateral diffusion and comparing 

with radial and overall diffusion to get more details about water dynamics inside 

spherical nano confinements is planned. Also using GCMC code to get the right number 

of water molecules inside each of hollow buckyballs, and recalculate all properties based 

on that is another interest. Replacing partial charge distribution of all atoms with a dipole 

or a quadrupole with the same density as original charged sample is among the future 

works too. 
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Appendix I: 

The whole sets of surfaces for topological heterogeneity (with radius of patch in each 

case) with snapshots of water droplet on corresponding surfaces. 

 

  

  

  

  

R=10 Å 

R=20 Å 

R=15 Å 

R=0 Å 
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R=25 Å 

R=30 Å 

R=35 Å 

R=40 Å 
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R=45 Å 

R=50 Å 

R=∞ 
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 Appendix II: 

 

Table form T Werder, J H Walther, R L Jaffe, T Halicioglu and P Koumoutsakos; “On 

the water-carbon interaction for use in MD simulations of graphite and carbon 

nanotubes”, J. Phys. Chem. B, 107, 2003, 1345-1352. 
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Appendix III: 

 
      v=60000. 
      write(*,*)'input z' 
C     read(*,*)z 
      do z=24,0,-.2 
      pi=3.14159 
      rs=0.  
      do i=1,10001 
      rsold=rs 
      zcomold=zcom 
      cosb=(i-1)*.0002-1. 
      b=2.-3.*cosb+cosb**3 
      r=(3.*v/pi/b)**(1./3.) 
      sinb=sqrt(1.-cosb**2) 
      rs=r*sinb 
      h=r*(1-cosb) 
C     new zCOM equation 
      zc=h-r 
      z1=h**2*r**2/2.-h**4/4.+2.*h**3/3.*zc-h**2*zc **2/2. 
      z2=h*r**2-h**3/3.+h**2*zc-h*zc**2 
      zcom=z1/z2 
      drdz=(rs-rsold)/(zcom-zcomold) 
      if(zcom.lt.z)goto 3 
      if(i.eq.10000)write(*,*)'no solution' 
      enddo 
      write(*,*)cosb,180./pi*acos(cosb),rs,drdz,h,z com 
      write(12,*)cosb,180./pi*acos(cosb),rs,drdz,h, zcom 
      if(i.eq.1)write(*,*)'no solution' 
      write(13,*)z,rs,drdz 
      enddo 
      stop 
      end 
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Appendix IV 72: 
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Appendix V: 
 
Subroutines developed in Dr. Luzar’s group to use in DLPOLY: 
Original codes adapted from Christopher Daub for bulk water and modified by  
Jamileh Seyed-Yazdi to use for water in the confinement, last modifications January 
2010. 
 
Hydrogen-bond correlation functions: 
 
SUBROUTINE CORRH2O(DELT0,DELT,XXX,YYY,ZZZ,NSTEP,NSTEQL, 
     : ICTSUM,INTSUM,IRTSUM,IBIGRTSUM,IH0,IH0POINT, IH0LIST, 
     :  IBIGH0,IHT,IBIGHT,NTIMEC,TSTEP,CELL,NT0,IT0 , 
     :  ROOWMAX,ROOMAX,ROHMAX,COSMIN,DOH,HAVSUM,HSUMSUM, 
     :  HSUMTOTAV,NNBSUM,NNBAV,BIGHAVSUM,BIGHSUMSUM ,BIGHSUMTOTAV, 
     :  HBLIP,BIGHBLIP) 
 
C Subroutine to calculate time correlation function s for H2O 
C simulations.  Calculates c(t) and k(t). 
C Kr(t), <Hdot(0)H(t)>/<H>  
 INCLUDE 'dl_params.inc' 
C ------------- INTEGER DECLARATIONS ---------- 
 INTEGER NSTEP,NSTEQL,NRUN, DELT 
 INTEGER I1, I2, II, J1, J0, JP, JF, T, DT 
 INTEGER JBEG, JEND 
 INTEGER J0BEG, J0END, J0PBEG, J0PEND, J0FBEG, J0FE ND 
 INTEGER NNBSUM, DELT0, NT0,IT0, T0IDX 
 INTEGER HSUM, HSUMSUM 
 INTEGER BIGHSUM, BIGHSUMSUM 
 INTEGER HBLIP, BIGHBLIP 
 DIMENSION NTIMEC(MAXNC) 
C -------------Neighbour list stuff-------------- 
 DIMENSION IH0LIST(MAXNB,MAXNT0) 
 DIMENSION IH0POINT(MXMOLS,MAXNT0) 
 INTEGER*1 IH0(MAXNB,MAXNT0), IHT(MAXNB) 
 INTEGER*1 IBIGH0(MAXNB,MAXNT0), IBIGHT(MAXNB) 
 INTEGER*1 IHOLD(MAXNB), IBIGHOLD(MAXNB) 
 DIMENSION ICTSUM(MAXNC), INTSUM(MAXNC) 
 DIMENSION IRTSUM(MAXNC), IBIGRTSUM(MAXNC) 
C ------------- REAL DECLARATIONS --------------- 
 DOUBLE PRECISION NBAV, NNBAV 
 DOUBLE PRECISION HAV, HTOTAV, HAVSUM, HSUMTOTAV 
 DOUBLE PRECISION BIGHAV, BIGHTOTAV, BIGHAVSUM, BIG HSUMTOTAV 
 DOUBLE PRECISION TSTEP, TSAMP, L, RTEMP 
 DOUBLE PRECISION XOO,YOO,ZOO 
 DOUBLE PRECISION XOH1, YOH1, ZOH1 
 DOUBLE PRECISION XOH2, YOH2, ZOH2 
 DOUBLE PRECISION XOH3,YOH3,ZOH3 
 DOUBLE PRECISION XOH4,YOH4,ZOH4 
 DOUBLE PRECISION ROOSQ, ROH1SQ, ROH2SQ, ROH3SQ, ROH4SQ 
 DOUBLE PRECISION COS 
C ---These are the HB criteria, read in from the 'C ONTROL' file: 
 DOUBLE PRECISION ROOWMAX, ROOMAX, ROHMAX, COSMIN 
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 DOUBLE PRECISION ROOWMAXSQ, ROOMAXSQ, ROHMAXSQ 
C --------------H2O internal geometry:----------- 
 DOUBLE PRECISION DOH, DOHSQ 
 
 DIMENSION CELL(9) 
 DIMENSION XXX(MXATMS), YYY(MXATMS), ZZZ(MXATMS) 
C ------------------------------------------------- --- 
 ROOWMAXSQ = ROOWMAX*ROOWMAX 
 ROOMAXSQ = ROOMAX*ROOMAX      
 ROHMAXSQ = ROHMAX*ROHMAX 
 DOHSQ = DOH*DOH 
 L = CELL(1) 
C NRUN = 1 on first call on 1st step after eq, 
C +1 for each call. 
 NRUN = (NSTEP - NSTEQL - 1)/DELT + 1 
C Initialize on the first call: 
 IF (NRUN .EQ. 1) THEN 
   DO I = 1, MAXNC 
     ICTSUM(I) = 0 
     INTSUM(I) = 0 
     IRTSUM(I) = 0 
     IBIGRTSUM(I) = 0 
     NTIMEC(I) = 0 
   ENDDO 
   DO I = 1, MAXNB 
     IHOLD(I) = 0 
     IBIGHOLD(I) = 0 
     DO J = 1, MAXNT0 
       IH0(I,J) = 0 
       IBIGH0(I,J) = 0 
       IH0LIST(I,J) = 0 
     ENDDO 
   ENDDO 
   NT0 = 0 
   IT0 = 1 
   HAV = 0.0D0 
   HAVSUM = 0.0D0 
   BIGHAV = 0.0D0 
   BIGHAVSUM = 0.0D0 
   HSUMSUM = 0 
   BIGHSUMSUM = 0 
   NNBSUM = 0 
C IHOLD is the past value of IHT, needed for the bl ip counter. 
 ELSE 
   DO I = 1, MAXNB 
     IHOLD(I) = IHT(I) 
     IBIGHOLD(I) = IBIGHT(I) 
   ENDDO 
 ENDIF 
C Reset HSUM, IHT, IBIGHT to zero every time: 
 HSUM = 0 
 BIGHSUM = 0 
 DO I = 1, MAXNB 
   IHT(I) = 0 
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   IBIGHT(I) = 0 
 ENDDO 
 
C Check if a new T0 is being added whether NRUN>MAX NC or not. 
 
 IF (NRUN .LE. MAXNC) THEN 
   IF ((NRUN. EQ. 1) .OR.  
     :  (MOD(NRUN-1,DELT0/DELT).EQ.0))THEN 
     NT0 = NT0 + 1 
          ENDIF 
 ELSE 
   IF (MOD(NRUN-1, DELT0/DELT) .EQ. 0) THEN 
     IT0 = MOD((NRUN-1)/(DELT0/DELT),NT0) + 1 
     DO II = 1, MAXNB 
       IH0(II,IT0) = 0 
       IBIGH0(II,IT0) = 0 
     ENDDO 
   ENDIF 
 ENDIF 
 
C Neighbour list. 
C Neighbour list update interval = DELT0 
 IF ((NRUN .EQ. 1) .OR.  
     :  (MOD(NRUN-1,DELT0/DELT) .EQ. 0)) THEN 
C zero the I1 counter: 
   I1 = 0 
C Look for neighbours: 
   DO I = 1, MXMOLS - 1 
     IF (NRUN .LE. MAXNC) THEN 
       IH0POINT(I,NT0) = I1 + 1 
     ELSE 
       IH0POINT(I,IT0) = I1 + 1 
     ENDIF 
     DO II = I+1, MXMOLS 
       XOO = DABS(XXX(320+3*I-2) - XXX(320+3*II-2))  
       IF (XOO .GT. L/2) XOO = L-XOO 
       YOO = DABS(YYY(320+3*I-2) - YYY(320+3*II-2))  
       IF (YOO .GT. L/2) YOO = L-YOO 
       ZOO = DABS(ZZZ(320+3*I-2) - ZZZ(320+3*II-2))  
       IF (ZOO .GT. L/2) ZOO = L-ZOO 
       ROOSQ = XOO*XOO + YOO*YOO + ZOO*ZOO 
       IF (ROOSQ .LT. ROOWMAXSQ) THEN 
         I1 = I1 + 1 
         IF ((NRUN .EQ. 1) .OR.  
     :   (MOD(NRUN-1,DELT0/DELT).EQ.0))THEN 
                  IF (NRUN .LE. MAXNC) THEN 
                    IH0LIST(I1,NT0) = II 
                  ELSE 
                    IH0LIST(I1,IT0) = II 
                  ENDIF 
                ENDIF 
       ENDIF 
     ENDDO 
   ENDDO 
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    IF (NRUN .LE. MAXNC) THEN 
     IH0POINT(MXMOLS,NT0) = I1+1 
   ELSE 
     IH0POINT(MXMOLS,IT0) = I1+1 
   ENDIF    
 ENDIF 
C End of Neighbour list! 
C checking the pairs with ROO < ROOWMAX to see if a ny of the 
C 4 ROH's are < ROHMAX, and then check the appropri ate angles: 
 DO I = 1, MXMOLS - 1 
C Neighbours of molecule I: 
   IF (NRUN .LE. MAXNC) THEN  
     JBEG = IH0POINT(I,NT0) 
     JEND = IH0POINT(I+1,NT0) - 1 
   ELSE 
     JBEG = IH0POINT(I,IT0) 
            JEND = IH0POINT(I+1,IT0) - 1 
   ENDIF 
    
   IF (JBEG .LE. JEND) THEN 
     DO J1 = JBEG, JEND 
       IF (NRUN .LE. MAXNC) THEN 
         II = IH0LIST(J1,NT0) 
       ELSE 
  II = IH0LIST(J1,IT0) 
       ENDIF 
       XOO = DABS(XXX(320+3*I-2) - XXX(320+3*II-2))  
       YOO = DABS(YYY(320+3*I-2) - YYY(320+3*II-2))  
       ZOO = DABS(ZZZ(320+3*I-2) - ZZZ(320+3*II-2))  
       IF (XOO .GT. L/2) XOO=XOO-L 
       IF (YOO .GT. L/2) YOO=YOO-L 
       IF (ZOO .GT. L/2) ZOO=ZOO-L 
       ROOSQ = XOO*XOO + YOO*YOO + ZOO*ZOO 
       IF (ROOSQ .LT. ROOMAXSQ) THEN 
  IBIGHT(J1) = 1 
  BIGHSUM = BIGHSUM + 1 
         IF ((NRUN .EQ. 1) .OR.  
     :   (MOD(NRUN-1,DELT0/DELT).EQ.0))THEN 
           IF (NRUN .LE. MAXNC) THEN 
      IBIGH0(J1,NT0) = 1 
           ELSE 
      IBIGH0(J1,IT0) = 1 
           ENDIF 
  ENDIF 
         XOH1 = DABS(XXX(320+3*I-2) - XXX(320+3*II- 1)) 
         YOH1 = DABS(YYY(320+3*I-2) - YYY(320+3*II- 1)) 
         ZOH1 = DABS(ZZZ(320+3*I-2) - ZZZ(320+3*II- 1)) 
         IF (XOH1 .GT. L/2) XOH1 = L-XOH1 
         IF (YOH1 .GT. L/2) YOH1 = L-YOH1 
         IF (ZOH1 .GT. L/2) ZOH1 = L-ZOH1               
         XOH2 = DABS(XXX(320+3*I-2) - XXX(320+3*II) ) 
         YOH2 = DABS(YYY(320+3*I-2) - YYY(320+3*II) ) 
         ZOH2 = DABS(ZZZ(320+3*I-2) - ZZZ(320+3*II) ) 
         IF (XOH2 .GT. L/2) XOH2 = L-XOH2 
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         IF (YOH2 .GT. L/2) YOH2 = L-YOH2 
         IF (ZOH2 .GT. L/2) ZOH2 = L-ZOH2 
         XOH3 = DABS(XXX(320+3*I-1) - XXX(320+3*II- 2)) 
         YOH3 = DABS(YYY(320+3*I-1) - YYY(320+3*II- 2)) 
         ZOH3 = DABS(ZZZ(320+3*I-1) - ZZZ(320+3*II- 2)) 
         IF (XOH3 .GT. L/2) XOH3 = L-XOH3 
         IF (YOH3 .GT. L/2) YOH3 = L-YOH3 
         IF (ZOH3 .GT. L/2) ZOH3 = L-ZOH3 
         XOH4 = DABS(XXX(320+3*I) - XXX(320+3*II-2) ) 
         YOH4 = DABS(YYY(320+3*I) - YYY(320+3*II-2) ) 
         ZOH4 = DABS(ZZZ(320+3*I) - ZZZ(320+3*II-2) ) 
         IF (XOH4 .GT. L/2) XOH4 = L-XOH4 
         IF (YOH4 .GT. L/2) YOH4 = L-YOH4 
         IF (ZOH4 .GT. L/2) ZOH4 = L-ZOH4 
         ROH1SQ = XOH1*XOH1 + YOH1*YOH1 + ZOH1*ZOH1  
         ROH2SQ = XOH2*XOH2 + YOH2*YOH2 + ZOH2*ZOH2  
         ROH3SQ = XOH3*XOH3 + YOH3*YOH3 + ZOH3*ZOH3  
         ROH4SQ = XOH4*XOH4 + YOH4*YOH4 + ZOH4*ZOH4  
C---------------------------------------------- 
         IF (ROH1SQ .LT. ROHMAXSQ) THEN 
           COS = (ROOSQ + DOHSQ - ROH1SQ)/(2*DSQRT( ROOSQ)*DOH) 
           IF (COS .GT. COSMIN) THEN 
             HSUM = HSUM + 1 
      IHT(J1) = 1 
             IF ((NRUN.EQ.1).OR. 
     :   (MOD(NRUN-1,DELT0/DELT).EQ.0))THEN 
        IF (NRUN .LE. MAXNC) THEN 
                 IH0(J1,NT0) = 1 
               ELSE 
                 IH0(J1,IT0) = 1 
               ENDIF 
             ENDIF 
           ENDIF 
         ELSE IF (ROH2SQ .LT. ROHMAXSQ) THEN 
           COS = (ROOSQ + DOHSQ - ROH2SQ)/(2*DSQRT( ROOSQ)*DOH) 
           IF (COS .GT. COSMIN) THEN 
             HSUM = HSUM + 1 
      IHT(J1) = 1 
             IF ((NRUN .EQ. 1) .OR. 
     :   (MOD(NRUN-1,DELT0/DELT).EQ.0))THEN 
        IF (NRUN .LE. MAXNC) THEN 
                 IH0(J1,NT0) = 1 
               ELSE 
                 IH0(J1,IT0) = 1 
               ENDIF 
             ENDIF 
           ENDIF 
         ELSE IF (ROH3SQ .LT. ROHMAXSQ) THEN 
           COS = (ROOSQ + DOHSQ - ROH3SQ)/(2*DSQRT( ROOSQ)*DOH) 
           IF (COS .GT. COSMIN) THEN 
             IHT(J1) = 1 
             HSUM = HSUM + 1 
             IF ((NRUN .EQ. 1).OR. 
     :   (MOD(NRUN-1,DELT0/DELT).EQ.0))THEN 
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        IF (NRUN .LE. MAXNC) THEN 
                 IH0(J1,NT0) = 1 
               ELSE 
                 IH0(J1,IT0) = 1 
               ENDIF 
             ENDIF 
           ENDIF 
         ELSE IF (ROH4SQ .LT. ROHMAXSQ) THEN 
           COS = (ROOSQ + DOHSQ - ROH4SQ)/(2*DSQRT( ROOSQ)*DOH) 
           IF (COS .GT. COSMIN) THEN 
             IHT(J1) = 1 
             HSUM = HSUM + 1 
             IF ((NRUN .EQ. 1).OR. 
     :   (MOD(NRUN-1,DELT0/DELT).EQ.0))THEN 
        IF (NRUN .LE. MAXNC) THEN 
                 IH0(J1,NT0) = 1 
               ELSE 
                 IH0(J1,IT0) = 1 
               ENDIF 
             ENDIF 
           ENDIF 
         ENDIF 
       ENDIF 
     ENDDO 
   ENDIF 
 ENDDO 
C--------------------------------------- 
C Calculation of <h> based on the last sample confi guration: 
 HAV = 2.0D0*DBLE(HSUM) / DBLE (MXMOLS*(MXMOLS-1)) 
C NBAV = avg. number of h bonds per molecule, witho ut 
C double counting (about 3/2=1.5) 
 NBAV = DBLE(HSUM)/DBLE(MXMOLS) 
C Accumulate HAVSUM, and HSUMSUM, and NNBSUM, the t otal 
C number of neighbours: 
C BIGHAV = <H>, avg. # of neighbours per H2O: 
 BIGHAV = 2.0D0*DBLE(BIGHSUM) / DBLE(MXMOLS*(MXMOLS -1)) 
 HAVSUM = HAVSUM + HAV 
 HSUMSUM = HSUMSUM + HSUM 
 BIGHAVSUM = BIGHAVSUM + BIGHAV 
 BIGHSUMSUM = BIGHSUMSUM + BIGHSUM 
 IF (NRUN .LE. MAXNC) THEN 
   NNBSUM = NNBSUM + IH0POINT(MXMOLS,NT0) -1 
 ELSE 
   NNBSUM = NNBSUM + IH0POINT(MXMOLS,IT0) -1 
 ENDIF 
C h and h(0) and H and H(0) done 
        IF (NRUN .GT. 1) THEN 
          DO I = 1, MXMOLS - 1 
     IF (NRUN .LE. MAXNC) THEN 
              JBEG = IH0POINT(I,NT0) 
              JEND = IH0POINT(I+1,NT0) - 1 
     ELSE 
       JBEG = IH0POINT(I,IT0) 
       JEND = IH0POINT(I+1,IT0) - 1 
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     ENDIF 
            IF (JBEG. LE. JEND) THEN 
              IF (MOD(NRUN-1,DELT0/DELT).EQ.0) THEN  
  IF (NRUN .LE. MAXNC) THEN 
                  JPBEG = IH0POINT(I,NT0-1) 
                  JPEND = IH0POINT(I+1,NT0-1) - 1 
  ELSE 
    IF (IT0 .EQ. 1) THEN 
      JPBEG = IH0POINT(I,NT0) 
      JPEND = IH0POINT(I+1,NT0) - 1 
    ELSE 
      JPBEG = IH0POINT(I,IT0-1) 
      JPEND = IH0POINT(I+1,IT0-1) - 1 
    ENDIF 
  ENDIF 
                DO J = JBEG,JEND 
                  IF (JPBEG .LE. JPEND) THEN 
                  DO JP = JPBEG,JPEND 
      IF (NRUN .LE. MAXNC) THEN 
                      IF (IH0LIST(J,NT0).EQ.IH0LIST (JP,NT0-1))THEN 
                        IF (IHT(J) .NE. IHOLD(JP))  
     :  HBLIP = HBLIP + 1 
                        IF (IBIGHT(J) .NE. IBIGHOLD (JP)) 
     :          BIGHBLIP = BIGHBLIP + 1 
                      ENDIF 
      ELSE 
        IF (IT0 .EQ. 1) THEN 
          IF (IH0LIST(J,1).EQ.IH0LIST(JP,NT0))THEN 
                          IF (IHT(J) .NE. IHOLD(JP) ) 
     :          HBLIP = HBLIP + 1 
                          IF (IBIGHT(J) .NE. IBIGHO LD(JP)) 
     :          BIGHBLIP = BIGHBLIP + 1 
                        ENDIF 
        ELSE 
   IF(IH0LIST(J,IT0).EQ.IH0LIST(JP,IT0-1))THEN 
                          IF (IHT(J) .NE. IHOLD(JP) ) 
     :          HBLIP = HBLIP + 1 
                          IF (IBIGHT(J) .NE. IBIGHO LD(JP)) 
     :          BIGHBLIP = BIGHBLIP + 1 
                        ENDIF 
        ENDIF 
      ENDIF 
                  ENDDO 
                  ENDIF 
                ENDDO 
              ELSE 
                DO J = JBEG, JEND 
                  IF (IHT(J) .NE. IHOLD(J)) HBLIP =  HBLIP + 1 
                  IF (IBIGHT(J) .NE. IBIGHOLD(J)) 
     :                  BIGHBLIP = BIGHBLIP + 1 
                ENDDO 
              ENDIF 
            ENDIF 
          ENDDO 
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        ENDIF 
 
C n(t), and kin(t), with BIGHT, also r(t) and R(t) 
 
 
 
 
 
C DT=1 if t=t0. 
 DO T = 1, NT0 
   IF (NRUN .LE. MAXNC) THEN 
     DT = NRUN - (DELT0/DELT)*(T-1) 
     T0IDX = T 
   ELSE 
     DT = MOD(NRUN,MAXNC) + (DELT0/DELT)*(NT0-T-IT0 +1) 
     IF (DT.LT.1) DT = DT + MAXNC 
     T0IDX = MOD(T+IT0,NT0) 
     IF (T0IDX .EQ. 0) T0IDX = NT0 
   ENDIF 
 C----------------------   
    DO I = 1, MXMOLS - 1 
     IF (NRUN .LE. MAXNC) THEN 
       JBEG = IH0POINT(I,NT0) 
       JEND = IH0POINT(I+1,NT0) - 1 
     ELSE 
       JBEG = IH0POINT(I,IT0) 
       JEND = IH0POINT(I+1,IT0) - 1 
     ENDIF 
     J0BEG = IH0POINT(I,T0IDX) 
     J0END = IH0POINT(I+1,T0IDX) – 1 
C------------------------------------------- 
     IF (JBEG .LE. JEND) THEN 
     DO J1 = JBEG, JEND 
       NTIMEC(DT) = NTIMEC(DT) + 1 
            IF (J0BEG .LE. J0END) THEN 
       DO J0 = J0BEG, J0END 
  IF (NRUN .LE. MAXNC) THEN 
           IF (IH0LIST(J1,NT0) .EQ. IH0LIST(J0,T0ID X)) THEN 
      IRTSUM(DT)=IRTSUM(DT) 
     :   + IBIGHT(J1)*IBIGH0(J0,T0IDX) 
      IBIGRTSUM(DT) = IBIGRTSUM(DT)  
     :   + IBIGHT(J1)*IH0(J0,T0IDX) 
      ICTSUM(DT) = ICTSUM(DT)  
     :   + IHT(J1)*IH0(J0,T0IDX) 
      INTSUM(DT) = INTSUM(DT)  
     :   + (1-IHT(J1))*IH0(J0,T0IDX)*IBIGHT(J1) 
         ENDIF 
  ELSE 
    IF (IH0LIST(J1,IT0) .EQ. IH0LIST(J0,T0IDX)) THE N 
      IRTSUM(DT)=IRTSUM(DT) 
     :   + IBIGHT(J1)*IBIGH0(J0,T0IDX) 
                    IBIGRTSUM(DT) = IBIGRTSUM(DT) 
     :                  + IBIGHT(J1)*IH0(J0,T0IDX) 
                    ICTSUM(DT) = ICTSUM(DT)  
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     :   + IHT(J1)*IH0(J0,T0IDX) 
      INTSUM(DT) = INTSUM(DT)  
     :                  + (1-IHT(J1))*IH0(J0,T0IDX) *IBIGHT(J1) 
    ENDIF 
  ENDIF 
       ENDDO 
       ENDIF 
     ENDDO 
     ENDIF 
   ENDDO 
C   print *, t, dt, t0idx, ntimec(dt) 
 ENDDO 
 HTOTAV = HAVSUM / DBLE(NRUN) 
 HSUMTOTAV = DBLE(HSUMSUM) / DBLE(NRUN) 
 BIGHTOTAV = BIGHAVSUM / DBLE(NRUN) 
 BIGHSUMTOTAV = DBLE(BIGHSUMSUM) / DBLE(NRUN) 
 NNBAV = DBLE(NNBSUM) / DBLE(NRUN) 
  RETURN 
  END 
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Mean square displacement and velocity auto-correlation functions: 
 
SUBROUTINE DIFF(NATMS,DELT0,XXX,YYY,ZZZ,XT0,YT0,ZT0 , 
:  VXX,VYY,VZZ,VX0,VY0,VZ0,NSTEP,NSTEQL, 
:  PMSD,VACF,PMSDAV,VACFAV,NTIME,CELL,NT0) 
 INCLUDE 'dl_params.inc' 
 INTEGER NATMS, NSTEP, NSTEQL, NSRUN,I,J,K,T 
 INTEGER DELT0, NT0, DT 
 DIMENSION NTIME(MAXSTP) 
 DOUBLE PRECISION L, DX, DY, DZ 
 DIMENSION CELL(9) 
 DIMENSION XT0(MXATMS,MAXNT0),YT0(MXATMS,MAXNT0) 
      DIMENSION ZT0(MXATMS,MAXNT0) 
 DIMENSION VX0(MXATMS,MAXNT0),VY0(MXATMS,MAXNT0) 
 DIMENSION VZ0(MXATMS,MAXNT0) 
 DIMENSION XXX(MXATMS),YYY(MXATMS),ZZZ(MXATMS) 
 DIMENSION VXX(MXATMS),VYY(MXATMS),VZZ(MXATMS) 
 DIMENSION PMSD(MAXSTP), VACF(MAXSTP) 
 DIMENSION PMSDAV(MAXSTP), VACFAV(MAXSTP) 
 L = CELL(1) 
 NRUN = NSTEP - NSTEQL 
C On the first call, initialize MSD and VACF to 0. 
 IF (NRUN .EQ. 1) THEN 
   NT0 = 0 
   DO I = 1, MAXSTP 
     PMSD(I) = 0.0D0 
     PMSDAV(I) = 0.0D0 
     VACF(I) = 0.0D0 
     VACFAV(I) = 0.0D0 
     NTIME(I) = 0 
   ENDDO 
 ENDIF 
 IF ( (NRUN .EQ. 1) .OR.  
     :  (MOD(NRUN-1,DELT0) .EQ. 0)) THEN 
   NT0 = NT0 + 1 
C   PRINT *, 'FIRST T0 ADDED, NT0=', NT0 
 ENDIF 
 DO I = 321, NATMS 
   IF ( (NRUN .EQ. 1) .OR.  
     :  (MOD(NRUN-1,DELT0) .EQ. 0)) THEN 
     XT0(I,NT0) = XXX(I) 
     YT0(I,NT0) = YYY(I) 
     ZT0(I,NT0) = ZZZ(I) 
     VX0(I,NT0) = VXX(I) 
     VY0(I,NT0) = VYY(I) 
     VZ0(I,NT0) = VZZ(I) 
   ENDIF 
C----------------------------- 
   DO T = 1, NT0 
     DT = NRUN - DELT0*(T-1) 
     DX = DABS(XXX(I) - XT0(I,T)) 
     IF (DX .GT. L/2) DX = DX - L 
     DY = DABS(YYY(I) - YT0(I,T)) 
     IF (DY .GT. L/2) DY = DY - L 
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     DZ = DABS(ZZZ(I) - ZT0(I,T)) 
     IF (DZ .GT. L/2) DZ = DZ - L 
     PMSD(DT) = PMSD(DT) + DX*DX + DY*DY + DZ*DZ 
     VACF(DT) = VACF(DT)+ VXX(I)*VX0(I,T) + 
     :  VYY(I)*VY0(I,T) + VZZ(I)*VZ0(I,T) 
     IF (I .EQ. 321) THEN 
       NTIME(DT) = NTIME(DT)+1 
     ENDIF 
   ENDDO 
 ENDDO 
 DO J = 1, NRUN 
   PMSDAV(J) = PMSD(J)/(DBLE(NATMS)*DBLE(NTIME(J)))  
   VACFAV(J) = VACF(J)/(DBLE(NATMS)*DBLE(NTIME(J)))  
 ENDDO 
 
 RETURN 
 END 
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Rotational relaxation time P2(t). 
 

 SUBROUTINE CORRH2O(DELT0,DELT,XXX,YYY,ZZZ,NSTEP,NS TEQL, 
     : XHH0,YHH0,ZHH0,TSTEP,CELL,NT0,IT0,P2SUM,NTIM EC, 
     : XHHT,YHHT,ZHHT) 
 INCLUDE 'dl_params.inc' 
C ------------- INTEGER DECLARATIONS ---------- 
 INTEGER NSTEP,NSTEQL,NRUN, DELT 
 INTEGER I1, I2, II, J1, J0, JP, JF, T, DT 
 INTEGER DELT0, NT0,IT0, T0IDX 
 DIMENSION NTIMEC(MAXNC) 
C ------------- REAL DECLARATIONS --------------- 
 DOUBLE PRECISION TSTEP, TSAMP, L, RTEMP 
 DOUBLE PRECISION XHH,YHH,ZHH 
 DOUBLE PRECISION DOT 
 DIMENSION CELL(9) 
 DIMENSION XXX(MXATMS), YYY(MXATMS), ZZZ(MXATMS) 
 DIMENSION P2SUM(MAXNC) 
 DIMENSION XHH0(MXMOLS,MAXNT0) 
 DIMENSION YHH0(MXMOLS,MAXNT0) 
 DIMENSION ZHH0(MXMOLS,MAXNT0) 
 DIMENSION XHHT(MXMOLS) 
 DIMENSION YHHT(MXMOLS) 
 DIMENSION ZHHT(MXMOLS)    
C ------------------------------------------------- --- 
 L = CELL(1) 
C NRUN = 1 on first call on 1st step after eq, 
C +1 for each call. 
 NRUN = (NSTEP - NSTEQL - 1)/DELT + 1 
C Initialize on the first call: 
 IF (NRUN .EQ. 1) THEN 
   DO I = 1, MAXNC 
     NTIMEC(I) = 0 
     P2SUM(I) = 0.0D0 
   ENDDO 
   DO I = 1, MXMOLS 
     DO J = 1, MAXNT0 
       XHH0(I,J) = 0.0D0 
       YHH0(I,J) = 0.0D0 
       ZHH0(I,J) = 0.0D0 
     ENDDO 
   ENDDO 
   NT0 = 0 
   IT0 = 1 
 ENDIF 
C Check if a new T0 is being added: whether NRUN>MA XNC or not. 
C reset ILIST0 when an old T0 being replaced. 
 IF (NRUN .LE. MAXNC) THEN 
   IF ((NRUN. EQ. 1) .OR.  
     :  (MOD(NRUN-1,DELT0/DELT).EQ.0))THEN 
     NT0 = NT0 + 1 
     DO I = 1, MXMOLS 
       XHH0(I,NT0) = 0.0D0 
       YHH0(I,NT0) = 0.0D0 
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       ZHH0(I,NT0) = 0.0D0 
     ENDDO      
          ENDIF 
 ELSE 
   IF (MOD(NRUN-1, DELT0/DELT) .EQ. 0) THEN 
     IT0 = MOD((NRUN-1)/(DELT0/DELT),NT0) + 1 
     DO I = 1, MXMOLS 
       XHH0(I,IT0) = 0.0D0 
       YHH0(I,IT0) = 0.0D0 
       ZHH0(I,IT0) = 0.0D0 
     ENDDO 
   ENDIF 
 ENDIF 
 
C neighbour list. 
C Neighbour list update interval = DELT0 
 IF ((NRUN .EQ. 1) .OR.  
     :  (MOD(NRUN-1,DELT0/DELT) .EQ. 0)) THEN 
C H-H distance is 1.633 A, so to get the unit vecto r, div. all 
C components by 1.633. 
C need the vector components 
   DO I = 1, MXMOLS 
     XHH = XXX(320+3*I) - XXX(320+3*I-1) 
     IF (XHH .GT. L/2) XHH = L-XHH 
     IF (XHH .LT. -L/2) XHH = L+XHH 
     YHH = YYY(320+3*I) - YYY(320+3*I-1) 
     IF (YHH .GT. L/2) YHH = L-YHH 
     IF (YHH .LT. -L/2) YHH = L+YHH 
     ZHH = ZZZ(320+3*I) - ZZZ(320+3*I-1) 
     IF (ZHH .GT. L/2) ZHH = L-ZHH 
     IF (ZHH .LT. -L/2) ZHH = L+ZHH 
     XHH = XHH/1.633 
     YHH = YHH/1.633 
     ZHH = ZHH/1.633 
C     print *, xhh,yhh,zhh 
     XHHT(I) = XHH 
     YHHT(I) = YHH 
     ZHHT(I) = ZHH 
     IF (NRUN .LE. MAXNC) THEN 
       XHH0(I,NT0) = XHH 
       YHH0(I,NT0) = YHH 
       ZHH0(I,NT0) = ZHH 
     ELSE 
       XHH0(I,IT0) = XHH 
       YHH0(I,IT0) = YHH 
       ZHH0(I,IT0) = ZHH 
     ENDIF 
   ENDDO 
 ENDIF 
 
 DO T = 1, NT0 
   IF (NRUN .LE. MAXNC) THEN 
     DT = NRUN - (DELT0/DELT)*(T-1) 
     T0IDX = T 
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   ELSE 
     DT = MOD(NRUN,MAXNC) + (DELT0/DELT)*(NT0-T-IT0 +1) 
     IF (DT.LT.1) DT = DT + MAXNC 
     T0IDX = MOD(T+IT0,NT0) 
     IF (T0IDX .EQ. 0) T0IDX = NT0 
   ENDIF 
   DO I = 1, MXMOLS 
C Do e(t).e(0) 
     DOT = XHHT(I)*XHH0(I,T0IDX)  
     :  + YHHT(I)*YHH0(I,T0IDX) 
     :  + ZHHT(I)*ZHH0(I,T0IDX) 
C second Legendre polynomial of DOT 
     P2SUM(DT) = P2SUM(DT)  
     :  + ((3.0D0*DOT*DOT)-1.0D0)/2.0D0 
   ENDDO 
   NTIMEC(DT) = NTIMEC(DT) + 1 
 ENDDO 
  RETURN 
  END 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 101

References: 
                                                 
1 T Young; “An Essay on the Cohesion of Fluids”, Philos. Trans. R. Soc. London, 95, 1805, 65-87.  
 
2  A B D Cassie and S Baxter; “Wettability of Porous Surfaces”, Trans. Faraday Soc., 40, 1944, 546-551. 
 
3 Gao, T J McCarthy; “How Wenzel and Cassie Were Wrong”, Langmuir, 23, 2007, 3762-3765. 
 
4 J Wang, D Bratko, A Luzar; “Probing surface tension additivity on chemically heterogeneous surfaces by 
a molecular approach”, Proceeding of the National Academy of Science of the United States of America, 
108,  2011, 6374-6379. 
 
5 G McHale; “Cassie and Wenzel: Were they really so wrong?”, Langmuir, 23, 2007, 8200-8205. 
 
6 G. McHale, N. J. Shirtcliffe, M. I. Newton; “Super-hydrophobic and super-wetting surfaces: Analytical 
potential?”, Analyst, 129, 2004, 284-287. 
 
7 Brandon, N Haimovich, E Yeger, and A Marmur; “Partial wetting of chemically patterned surfaces: The 
effect of drop size”, J. Colod Interface Sci., 263, 2003, 237-243. 
 
8 A Marmur and E Bittoun,; “When Wenzel and Cassie are right: Reconciling local and global 
considerations”, Langmuir, 25, 2009, 25, 1277-1281. 
 
9 Y Kwon, S Choi, N Anantharaju, J Lee, M V Panchagnula and N A Patankar; “Is the Cassie-Baxter 
formula relevant?”, Langmuir, 26, 2010, 17528-17531.  
 
10 J F Joanny and P G de Gennes; “A model for contact angle hysteresis”, J. Chem.Phys., 81, 1984,  
552-562. 
 
11 L Gao, T J McCarthy; “Comment on how Wenzel and Cassie were wrong”, Langmuir, 23, 2007, 13243-
13243. 
 
12 J Ritchie, J Seyed-Yazdi, D Bratko, A Luzar; 2011, to be published. 
 
13 S L Gras, T Mahmud, G Rosengarten, A Mitchell, K Kalantar-zadeh  “Intelligent control of surface 
hydrophobicity”, ChemPhysChem, 8, 2007, 2036-2050. 
 
14 T Roques-Carmes, A Gigante, J M Commenge, S Corbel; “ Use of surfactants to reduce the driving 
voltage of switchable optical elements based on electrowetting”, 25, 2009, 12771-12779. 
 
15 J Lahann, J S Mitragotri, T Tran, H Kaido, J Sundaram, I S Choi, S Hoffer, G A Somorjai and R Langer, 
“A Reversibly Switching Surface”, Science, 299, 2003, 371-374. 
 
16 R Fetzer, M Ramiasa and J Ralston; “Dynamics of liquid-liquid displacement”, Langmuir, 25, 2009, 
8069-8074. 
 
17 S Ray, R Sedev, C Priest, J Ralston; “Influence of the work of adhesion on the dynamic wetting of 
chemically heterogeneious surfaces”, Langmuir, 24, 2008, 13007-13012. 
 
18 C Priest, R Sedev, J Ralston; “Asymmetric wetting hysteresis on chemical defects”, Phys. Rev. Lett., 99, 
2007, 026103. 
 
19 L Bocquet, E Charlaix; “Nanofluidics, from bulk to interfaces”, Chem. Soc. Rev., 39, 2010, 1073-1095. 
 



www.manaraa.com

 102

                                                                                                                                                 
20 J Marti, G Nagy, E Guardia, M C Gordillo; “Molecular dynamics simulation of liquid water confined 
inside graphite channels: dielectric and dynamical properties”, J. Phys. Chem. B, 110, 2006, 23987-23994. 
 
21 L Huang, L Zhang, Q Shao, J Wang, L Lu, X Lu, S Jiang, W Shen; “Molecular dynamics simulation 
study of the structural characteristics of water molecules confined in functionalized carbon nanotubes”,  
J. Phys. Chem. B, 110, 2006, 25761-25768. 
 
22 O Byl, J Liu, Y Wang, W Yim, J K Johnson, J T Yates Jr.; “Unusual hydrogen bonding in water-filled 
carbon nanotubes”,  J. Am. Chem. Soc., 128, 2006,12090-12097. 
 
23 J Shiomi, T Kimura, S Maruyama; “Molecular dynamics of ice-nanotube formation inside carbon 
nanotubes”, J. Phys. Chem. C, 111, 2007, 12188-12193. 
 
24 M Rovere, P Gallo; “Effects of confinement on static and dynamical properties of water”, Eur. Phys. J. E, 
12, 2003, 77-81. 
 
25 M Rovere, M A Ricci, D Vellati, F Bruni; “A molecular dynamics simulation of water confined in a 
cylindrical SiO2 pore”, J. Chem. Phys., 108, 1998, 9859-9867. 
 
26 A Malani, K G Ayappa, S Murad; “Influence of hydrophilic surface specificity on the structural 
properties of confined water”, J. Phys. Chem. B, 113, 2009, 13825-13839.  
 
27 P L Luisi, B E Straub; “Reverse micelles: biological and technological relevance of amphiphilic 
structures in apolar media”, Plenum, New York, 1984. 
 
28 T De, A Maitra; “Solution behavior of aerosol OT in non-polar solvents”, Adv. Colloid Interface Sci., 59, 
1995, 95-193 
 
29 N E Levinger; “Water in confinement”, Science, 298, 2002, 1722-1723. 
 
30 J Faeder, B M Ladanyi; “Molecular dynamics simulations of the interior of aqueous reverse micelles”, 
 J. Phys. Chem. B, 104, 2000, 1033-1046. 
 
31 D E Rosenfeld, C A Schmuttenmaer; “Dynamics of water confined within reverse micelles”, J. Phys. 
Chem. B, 110, 2006, 14304-14312. 
 
32 P A Pieniazek, Y S Lin, J Chowdhary, B M Ladanyi, J L Skinner; “Vibrational spectroscopy and 
dynamics of water confined inside reverse micelles”, J. Phys. Chem., 113, 2009, 15017-15028. 
 
33 M R Harpham, B M Ladanyi, N E Levinger, K W Herwig; “Water motion in reverse micelles studied by 
quasielastic neutron scattering and molecular dynamics simulations”, J. Phys. Chem., 121, 2004, 7855-
7866. 
 
34 D S Venables, K Huang, C A Schmuttenmaer; “Effect of reverse micelle size on the librational band of 
confined water and methanol”, J. Phys. Chem. B, 105, 2001, 9132-9138. 
 
35 G Onori, A Santucci; “IR Investigations of Water Structure in Aerosol OT Reverse Micellar 
Aggregates”, J. Phys. Chem., 97 1993, 5430-5434. 
 
36 I R Piletic, D E Moilanen, D B Spry, N E Levinger, M D Fayer; “Testing the Core/Shell Model of 
Nanoconfined Water in Reverse Micelles Using Linear and Nonlinear IR Spectroscopy”, J. Phys. Chem. A, 
110, 2006, 4985-4999. 
 
37 A M Dokter, S Woutersen, H Bakker; “Inhomogeneous dynamics in confined water nanodroplets”,  
J. Proc. Natl. Acad. Sci. U.S.A., 103, 2006, 15355-15358. 



www.manaraa.com

 103

                                                                                                                                                 
 
38 T Mitra, P Miro, A R Tomsa, A Merca, H Bogge, J B Avalos, J M Poblet, C Bo, A Muller; “Gated and 
Differently Functionalized (New) Porous Capsules Direct Encapsulates' Structures: Higher and Lower 
Density Water”, A. Chem. Eur. J., 15, 2009, 1844-1852. 
 
39 M Garcia-Ratés, P Miró, J M Poblet, C Bo, J Bonet Avalos; “ Dynamics of encapsulated water inside 
Mo(132) cavities”, J. Phys. Chem. B, 115, 2011, 5980-5992. 
 
 
40 H J C Berendsen, J R Grigera, T P Straatsma; “The missing term in effective pair potentials”, J. Phys. 
Chem., 91, 1987, 6269-6271. 
 
41 B Guillot; “A reappraisal of what we have learnt during three decades of computer simulations on 
water”, J. Mol. Liq., 101, 2002, 219-260. 
 
42 C Vega, J L F Abascal, M M conde, J L Aragones; “What ice can teach us about water interactions: A 
critical comparison of the performance of different water models”, Faraday Discuss., 141, 2009, 251-276. 
 
43 D Frenkel, B Smit; “Understanding Molecular Simulation from Algorithms to Applications”, 2nd ed., 
Academic Press: San Diego, 2002, Vol. 1. 
 
44 M P Allen, D. J. Tildesley; “Computer Simulation of Liquids”, Oxford University Press: New York, 
1991 
 
45 S Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics”, J. Comput. Phys., 117, 
1995, 1-19. 
 
46 W Smith, T R Forester; “DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation 
package”, J. Mol. Graphics, 14, 1996, 136-141. 
 
47 S W Deleeuw, J W Perram, E R Smith; “Simulation of Electrostatic Systems in Periodic Boundary-
Conditions. 1. Lattice Sums and Dielectric-Constants”, Proceedings of the Royal Society of London Series 
a-Mathematical Physical and Engineering Sciences, 373, 1980, 27-56. 
 
48 U Essmann, L Perera, M L Berkowitz; “A Smooth Particle Mesh Ewald Method”, J. Chem.Phys., 103, 
1995, 8577-8593. 
 
49 A Y Toukmaji, J A Board; “Ewald summation techniques in perspective: a survey”, Comp. Phys. Comm., 
95, 1996, 73-92. 
 
50 T Werder, J H Walther, R L Jaffe, T Halicioglu and P Koumoutsakos;” On the water-carbon interaction 
for use in molecular dynamics simulations of graphite and carbon nanotubes”, J. Phys. Chem. B, 107, 2003, 
1345-1352. 
 
51 M J de Ruijter, T D Blake, J De Coninck; “Dynamic wetting studied by molecular modeling simulations 
of droplet spreading”, Langmuir, 15, 1999, 7836-7847. 
 
52 A Luzar and D Chandler; “Effect of environment on hydrogen bond dynamics in liquid water”,  Phys. 
Rev. Lett., 76, 1996, 928-931.  
 
53 M Mezei, D L Beveridge; “Theoretical studies of hydrogen-bonding in liquid water and dilute aqueous-
solution”, J. Chem. Phys., 74, 1981, 622-632. 
 



www.manaraa.com

 104

                                                                                                                                                 
54 A Rahman, F. H. Stillinger; “Molecular dynamics study of liquid water”, J. Chem. Phys., 55, 1971, 3336- 
3359. 
 
55 L Jorgensen, J Chandrasekhar, J Madura, R W Impey, M L Klein; “Comparison of simple potential 
functions for simulating liquid water”, J.Chem. Phys., 79, 1983, 926-935.  
 
56 D Chandler; “Introduction to modern statistical mechanics”, Oxford, New York, 1987. 
 
57 C W Extrand; “Contact Angles and Hysteresis on Surfaces with Chemically Heterogeneous Islands”, 
Langmuir, 19, 2003, 3793-3796. 
 
58 J Ritchie; “Contact Angle Of A Nano-Drop On A Heterogeneous Surface”, Master Thesis, VCU, 2010.  
 
59 S Nose, “A molecular dynamics method for simulations in the canonical ensemble”, Molecular Physics, 
52, 1984, 255-268. 
 
60 J P Ryckaert, G Ciccotti, H J C Berendsen; “Numerical integration of the Cartesian equations of motion 
of a system with constraints: molecular dynamics of n-alkanes”, J. Comput. Phys., 23, 1977, 327-341. 
 
61 R N Wenzel; “Resistance of Solid Surfaces to Wetting by Water”, Ind. Eng. Chem., 28, 1936, 988-994. 
 
62 C D Daub, J Wang, S Kudesia, D Bratko, A Luzar; “The influence of molecular-scale roughness on the 
surface spreading of an aqueous nanodrop ”, Faraday Disscus., 146, 2010, 67-77. 
 
63 J Mittal, G Hummer; “Interfacial thermodynamics of confined water near molecularly rough surfaces”, 
Faraday Discuss., 146, 2010, 341-352. 
 
64 H Gelderblom, A G Marin, H Nair, A Houselt, L Lefferts, J H Snoeijer and D Lohse; “How water 

droplets evaporate on a superhydrophobic substrate”, Phys. Rev. E, 83, 2011, 026306. 

65 Y ChangWei, H Feng  and H PengFei; “The apparent contact angle of water droplet on the micro-

structured hydrophobic surface ”, Science China-Chemistry, 53, 2010, 912-916. 

 
66 J Ralston, M Popescu, R Sedev; “Dynamics of Wetting from an Experimental Point of View”, Annual 

Review of Materials Research, 38, 2008, 23-43. 

 
67 T D Blake and J De Coninck; “The influence of pore wettability on the dynamics of imbibition and 
drainage”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 250, 2004, 395-402. 
 
68 M Paneru, C Priest, R Sedev, J Ralston; “Static and dynamic electrowetting of an ionic liquid in a 
solid/liquid/liquid system”, J. Am. Chem. Soc., 132, 2010, 8301-8308. 
 
69 R Fetzer, J Ralston; “Influence of Nanoroughness on Contact Line Motion”, J. Phys. Chem. C, 114, 
2010, 12675-12680.  
 
70 G McHale, M I Newton; “Frenkel’s method and the dynamic wetting of heterogeneous planar surfaces”, 
Colloids and Surfaces A, 206, 2002, 193-201. 
 
71 T D Blake, J M Haynes; “Kinetics of liquid/liquid displacement”, J. Colloid Interface Sci., 30, 1969, 
421-423. 
 



www.manaraa.com

 105

                                                                                                                                                 
72 H Li, R Sedev and J Ralston; “Dynamic wetting of a fluoropolymer surface by ionic liquids”, Phys. 
Chem. Chem. Phys., 13, 2011, 3952-3959. 
 
73 R G Cox; “The dynamics of the spreading of liquids on a solid surface. Part 2. Surfactants”, Journal of 
Fluid Mechanics, 168, 1986, 195-220. 
 
74 O V Voinov; “Hydrodynamics of wetting”, Fluid Dyn., 11, 1976, 714-721. 
 
75 T D Blake, J De Coninck; “The influence of solid-liquid interactions on dynamic wetting”, Adv. colloid 
interface sci., 96, 2002, 21-36. 
 
76 P G Petrov and J G Petrov; “A combined molecular-hydrodynamic approach to wetting kinetics”, 
Langmuir, 8, 1992, 1762-1767. 
 
77 C Vega, E de Miguel; “Surface tension of the most popular models of water by using the test-area 
simulation method”, J. Chem. Phys., 126, 2007, 154707(1-10). 
 
78 P E Smith, W F van Gunsteren; “The viscosity of SPC and SPC/E water at 277 and 300K”, Chem. Phys. 
Lett., 215, 1993, 315-318.  
 
79 J Seyed-Yazdi, D Bratko, A Luzar; “Switchable nano-wetting dynamics”, to be published. 
 
80 M Henry; “Quantitative Modelization of Hydrogen-Bonding in Polyoxometalate Chemistry”, Journal of 
Cluster Science, 13, 2002, 437-458. 
 
81 M Henry; “Unraveling water structure inside and between nanocapsules”, Journal of Cluster Science, 14, 
2003, 267-287. 
 
82 A Muller, H Bogge, E Diemann; “Structure of a cavity-encapsulated nanodrop of water ”, Inorg. Chem. 
Commun., 6, 2003, 52-53. 
 
83 S Nose; “A molecular dynamics method for simulation in the canonical ensemble”, Mol. Phys., 52, 1984, 
255-268. 
 
84 A Luzar, D Chandler; “Hydrogen-bond kinetics in liquid water”, Nature, 379, 1996, 55-57. 
 
85 A Luzar, “Resolving the hydrogen bond dynamics conundrum”, J. Chem. Phys., 113, 2000,  
10663-10675. 
 
86 L Lu and M L Berkowitz; “Hydration force between model hydrophilic surfaces: Computer simulations”, 
Chem. Phys., 124, 2006, 101101 (4p). 
 
87 A Muller, M Henry; “Nanocapsule water-based chemistry”, C. R. Chimie, 6, 2003, 1201-1208.  
 
88 A Muller, B Hartmut, M Henry; “Coordination chemistry under confined conditions: a simplified 
illustrative view”, C. R. Chimie, 8, 2005, 47-56. 
 
89 S W Rick, S J Stuart, B J Berne; “Dynamical fluctuating charge force fields: Application to liquid 
water”, J. Chem. Phys., 101, 1994, 6141-6156.  
 
90 C Daub, A Luzar; to be published. 
 
91 R W Impey, P A Madden, I R McDonald; “Spectroscopic and transport properties of water model 
calculations and the interpretation of experimental results”, Mol. Phys., 46, 1982, 513-539. 
 



www.manaraa.com

 106

                                                                                                                                                 
92 A Faraone, E Fratini, A M Todea, B Krebs, A Muller, P Baglioni; “Dynamics of water in voids between 
well-defined and densely packed spherical nanocages acting as polyprotic inorganic acids”,  
J. Phys.Chem. C, 113, 2009, 8635-8644. 
 
93 P Liu, E Harder, B J Berne; “On the calculation of diffusion coefficients in confined fluids and interfaces 
with an application to the liquid-vapor interface of water”, J. Phys. Chem. B, 108, 2004, 6595-6602. 
 
94 D A Turton, J Hunger, G Hefter, R Buchner, K Wynne; “Glasslike behavior in aqueous electrolyte 
solutions”, J. Chem. Phys. (Comm.), 128, 2008, 161102-161105. 
 
95 C S Hsieh, R Kramer Campen, A C Vila Verde, P Bolhuis, H K Nienhuys, M Bonn; “Ultrafast 
reorientation of dangling OH groups at the air-water interface using femtosecond vibrational spectroscopy”, 
Physical Review Letters, 107, 2011, 116102. 



www.manaraa.com

107 

 

Vita 

Jamileh Seyed Yazdi was born on Dec. 13th in Rafsanjan, Iran. 

 

Education: 

Bachelor of Science, Ferdowsi University, Physics, Iran –September 1997. 

Master of Science, Shiraz University, Physics, Iran –September 2000. 

Master of Science, UvA Amsterdam, ENS Lyon and Sapienza Rome –July 2007. 

Ph.D, Iran University of Science and Technology, Physics –January 2009. 

Master of Science, Chemistry, Virginia Commonwealth University, Richmond, 
VA –December 2011. 

Fellowships, Scholarships and Awards (VCU): 

Altria Fellowship, VCU, Summer 2010. 

Lidia M. Vallarino Scholarship, Summer 2010. 

Outstanding Teaching Assistant Award, March 2011. 

Global Ambassador Scholarship, August 2011.  

Scientific Contributions: 

Jamileh Seyed Yazdi, Jihang Wang, Dusan Bratko, Alenka Luzar; “Switchable 
Nanowetting Dynamics”, Poster Presentation at Faraday Discussion, Richmond 
VA, 2010. 

John Ritchie, Jamileh Seyed Yazdi, Dusan Bratko, Alenka Luzar; “Shape of a 
Droplet atop a Surface Heterogeneity at the Nanoscale”, to be submitted 
December 2011. 

“Switchable Nanowetting Dynamics”, to be completed. 

“Water Dynamics inside Nanospheres”, to be completed. 


	WETTING TRANSITIONS AT NANOSTRUCTURED SURFACES
	Downloaded from

	P1_3_Dec14.pdf
	Pages_i_Dec14.pdf
	abstract_MS_VCU_Dec142011.pdf
	MS_Text_JamilehSY_Dec14_2011.pdf
	Vita.pdf

